
ibm.com/redbooks

Front cover

ABCs of z/OS System
Programming
Volume 8

Paul Rogers
David Carey
Peter Hilger

Diagnosis fundamentals, IPCS

Dump analysis, problem diagnosis

Diagnostic procedures

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

ABCs of z/OS System Programming Volume 8

May 2007

SG24-6988-00

© Copyright International Business Machines Corporation 2007. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (May 2007)

This edition applies to Version 1 Release 8 of z/OS (5694-A01), Version 1 Release 8 of z/OS.e (5655-G52), and to all
subsequent releases and modifications until otherwise indicated in new editions.

Note: Before using this information and the product it supports, read the information in “Notices” on
page vii.

Contents

Notices . vii
Trademarks . viii

Preface . ix
The team that wrote this book .x
Become a published author .x
Comments welcome. .x

Chapter 1. z/OS problem diagnosis fundamentals . 1
1.1 Problem identification . 2
1.2 What version or release is running . 4
1.3 Waits, system hangs, and abends . 6
1.4 Logging messages . 8
1.5 Dumps and traces . 10
1.6 Tools and service aids . 12
1.7 Tools and service aids . 15
1.8 Problem analysis with IPCS . 17
1.9 SMP/E and maintenance . 18
1.10 Using SMP/E and dumps . 20
1.11 SDSF and RMF. 23

Chapter 2. Problem resolution steps. 25
2.1 Identifying a problem. 26
2.2 Prioritize problem resolution . 28
2.3 Problem severity . 30
2.4 Analyze a problem - ask for assistance . 32
2.5 Gather Messages and Logrec. 34
2.6 SYSLOG processing . 36
2.7 SYSLOG messages . 37
2.8 OPERLOG (operations log) . 39
2.9 Job error logs . 40
2.10 Logrec data set . 43
2.11 Analyzing EREP reports . 45
2.12 Using EREP . 46
2.13 EREP reports . 48
2.14 EREP parameter and control statements . 50
2.15 Copy logs to tape . 52
2.16 Implement a resolution . 53

Chapter 3. Common problem types. 55
3.1 Common problem types . 56
3.2 Stand-alone dumps . 58
3.3 Symptom dump output . 59
3.4 Waits, hangs, and loops . 61
3.5 SLIP command . 63
3.6 Storage overlays . 65
3.7 Storage overlay during IPL . 66
3.8 Storage overlay in a production system . 68
3.9 SLIP to catch the overlayer . 69
© Copyright IBM Corp. 2007. All rights reserved. iii

Chapter 4. Dump processing . 71
4.1 Getting or requesting dumps. 72
4.2 Slip commands . 74
4.3 SLIP dumps . 76
4.4 SNAP dumps. 79
4.5 Stand-alone dumps . 81
4.6 The SADMP program . 84
4.7 Using stand-alone dumps . 86
4.8 SADMP processing . 88
4.9 SVC dumps . 90
4.10 Allocating SYS1.DUMPxx data sets . 92
4.11 Automatic allocation of SVC dump data sets . 94
4.12 Dumping multiple address spaces in a sysplex . 96
4.13 Managing taking a dump. 99
4.14 Customizing dumps using SDATA options . 101
4.15 Dump options and considerations. 103
4.16 Catalog address space (CAS) dumps. 104

Chapter 5. z/OS trace processing . 107
5.1 z/OS trace facilities . 108
5.2 GTF trace definitions. 110
5.3 Implementing GTF trace . 112
5.4 Component trace (CTRACE) . 116
5.5 Implementing component trace. 118
5.6 Component trace for System Logger . 120
5.7 Master trace . 122
5.8 GFS trace . 124
5.9 System trace . 126
5.10 SMS tracing. 128
5.11 Trace data using an external writer . 130

Chapter 6. IPCS dump debugging . 133
6.1 IPCS dump debugging . 135
6.2 IPCS command processing. 137
6.3 IPCS dump debug example . 139
6.4 IPCS support of large data sets . 141
6.5 Setting the IPCS defaults . 143
6.6 IPCS utility menu. 145
6.7 SADMP dump data set utility . 146
6.8 Using IPCS subcommands . 147
6.9 SADMP analysis and COPYDUMP. 149
6.10 IPCS COPYDUMP . 151
6.11 Using subcommands. 152
6.12 Analyzing dumps. 154
6.13 IPCS trace commands - MTRACE . 156
6.14 SYSTRACE command . 158
6.15 IPCS SUMMARY subcommand . 160
6.16 What is VERBX . 162
6.17 IPCS VERBX LOGDATA command . 164
6.18 Using the SYS1.LOGREC. 166
6.19 IPCS virtual storage commands . 168
6.20 Using IPCS to browse storage . 172
6.21 Using IPCS to find the failing instruction . 174
6.22 Analyzing for resource contention. 176
iv ABCs of z/OS System Programming Volume 8

6.23 Searching IBM problem databases . 178

Chapter 7. z/OS Language Environment . 181
7.1 Language Environment ABEND and CEEDUMP handling . 182
7.2 Common Language Environment messages . 184
7.3 Language Environment message abend prefixes. 185
7.4 Collecting debug documentation. 187
7.5 Language Environment and CICS debugging. 189
7.6 Language Environment and UNIX System Services dumps. 191
7.7 Understanding CEEDUMP . 193
7.8 ZMCH control block. 196
7.9 IPCS and Language Environment. 198

Chapter 8. Debug and maintenance tools. 201
8.1 Using SMP/E. 202
8.2 Find a load module . 204
8.3 AMBLIST job to get LMOD and source information . 207
8.4 IEAABD00, IEADMP00 and IEADMR00 members . 210
8.5 PDATA options (only valid for IEADMP00) . 212
8.6 SDATA and PDATA recommendations. 213

Chapter 9. SDSF and RMF . 217
9.1 System Display and Search Facility (SDSF). 218
9.2 Using the SYSLOG for debugging . 221
9.3 RMF Resource Measurement Facility . 223
9.4 RMF Monitor I data gathering . 225
9.5 Monitor II data gathering . 227
9.6 RMF Monitor III data gathering . 229

Chapter 10. z/Architecture and addressing . 231
10.1 Program status word (PSW) . 232
10.2 Program-status word (PSW) . 233
10.3 64-bit addressing. 236
10.4 Next sequential instruction . 238
10.5 64-bit address space. 240

Appendix A. IPCS tools and lab exercises . 243
A.1 IPCS lab exercise agenda . 244
A.2 IPCS lab setup instructions. 248
A.3 Commands to analyze dumps . 249
A.4 The RTCT control block . 253
A.5 The IP ST REGS command . 255
A.6 Browsing storage . 257
A.7 IPCS SYSTRACE subcommand . 260
A.8 IPCS VERBX MTRACE subcommand . 264
A.9 IP SUMMARY FORMAT subcommand . 266
A.10 The IP ANALYZE RESOURCE subcommand . 268
A.11 Diagnosing excessive CPU time. 270
A.12 TSO user hung . 271
A.13 Job IBMUSER3 hung (contention problem?) . 272
A.14 A standalone dump example . 273
A.15 LIST TITLE and LIST SLIPTRAP - Answers . 275
A.16 IP ST WORKSHEET - Answers . 275
A.17 Using the RTCT control block - Answers . 275
 Contents v

A.18 Information from IP ST REGS - Answers . 276
A.19 IP SYSTRACE - Answers . 276
A.20 IP VERBX MTRACE - Answers . 277
A.21 SUMMARY FORMAT - Answers . 277
A.22 ANALYZE RESOURCE - Answers . 277
A.23 Diagnosing excessive CPU time - Answers . 278
A.24 TSO user hung - Answers . 278
A.25 Job IBMUSER3 hung (contention problem?) - Answers. 278
A.26 A standalone dump example - Answers . 279
A.27 Diagnosing loops and hangs . 281

Appendix B. Using IPCS to diagnose abends . 283
B.1 Lab exercises . 284
Diagnosing an ABEND0C1 dump . 289
Diagnosing an ABEND0C4 . 291
Diagnosing ABEND138 errors . 293
Diagnosing storage problems - ABEND878. 295
Diagnosing local storage shortage. 299
Lab exercise #1 - Answers IP ST REGS . 302
Lab exercise #1 - Answers IP SYSTRACE . 302
Lab exercise #1 - Answers Summary Format . 302
Lab exercise #2 - Answers diagnosing an ABEND0C1 . 303
Lab exercise #3 - Answers diagnosing an ABEND0C4 . 303
Lab exercise #4 - Answers diagnosing an ABEND138 . 304
Lab exercise #5 - Answers diagnosing storage - ABEND878 . 305
Lab exercise #5 - Answers ABEND878 - Analyzing storage use. 306
Lab exercise #5 - Answers ABEND878 - CSA/SQA tracker . 306
Lab exercise #6 - Answers diagnosing local storage shortages . 307

Appendix C. z/OS trace processing data . 309
C.1 GFS trace information . 310

C.1.1 DIAGxx parmlib member syntax. 310
C.1.2 GFS trace data . 310
C.1.3 IPCS MVS dump component data analysis panel . 311
C.1.4 SUMMARY subcommand parameters . 312
C.1.5 VERBEXIT subcommand . 313
C.1.6 VERBX VSMDATA subcommand . 314
C.1.7 STATUS FAILDATA subcommand. 314

Appendix D. IPCS commands . 317
D.1 IPCS commands. 318

Related publications . 323
IBM Redbooks . 323
Other publications . 323
How to get Redbooks. 324
Help from IBM . 324
vi ABCs of z/OS System Programming Volume 8

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that does
not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy, modify, and
distribute these sample programs in any form without payment to IBM for the purposes of developing, using,
marketing, or distributing application programs conforming to IBM's application programming interfaces.
© Copyright IBM Corp. 2007. All rights reserved. vii

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

CICS®
DB2®
DFSMS™
Enterprise Systems

Architecture/390®
Geographically Dispersed Parallel

Sysplex™
GDPS®
Infoprint®
IBM®

IMS™
Language Environment®
MQSeries®
MVS™
MVS/XA™
OS/390®
Parallel Sysplex®
Redbooks®
Redbooks (logo) ®
RACF®

REXX™
RMF™
System/360™
System/370™
VisualAge®
VTAM®
WebSphere®
z/Architecture®
z/OS®
zSeries®

The following terms are trademarks of other companies:

Java, RSM, Virtual Storage Manager, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.
viii ABCs of z/OS System Programming Volume 8

Preface

The ABCs of z/OS® System Programming is an 11-volume collection that provides an
introduction to the z/OS operating system and the hardware architecture. Whether you are a
beginner or an experienced system programmer, the ABCs collection provides the
information you need to start your research into z/OS and related subjects. If you would like to
become more familiar with z/OS in your current environment, or if you are evaluating
platforms to consolidate your e-business applications, the ABCs collection serves as a
powerful technical tool.

This publication, Volume 8, shows you how to:

� Adopt a systematic and thorough approach to dealing with problems and identifying the
different types of problems

� Determine where to look for diagnostic information and how to obtain it

� Interpret and analyze the diagnostic data collected

� Escalate problems to the IBM® Support Center when necessary

� Collect and analyze diagnostic data—a dynamic and complex process

� Identify and document problems, collect and analyze pertinent diagnostic data and obtain
help as needed, to speed you on your way to problem resolution

The content of the volumes is as follows:

Volume 1: Introduction to z/OS and storage concepts, TSO/E, ISPF, JCL, SDSF, and z/OS
delivery and installation

Volume 2: z/OS implementation and daily maintenance, defining subsystems, JES2 and
JES3, LPA, LNKLST, authorized libraries, SMP/E, Language Environment®

Volume 3: Introduction to DFSMS™, data set basics storage management hardware and
software, catalogs, and DFSMStvs

Volume 4: Communication Server, TCP/IP, and VTAM®

Volume 5: Base and Parallel Sysplex® , System Logger, Resource Recovery Services
(RRS), global resource serialization (GRS), z/OS system operations, automatic restart
management (ARM), Geographically Dispersed Parallel Sysplex™ (GDPS®)

Volume 6: Introduction to security, RACF®, Digital certificates and PKI, Kerberos,
cryptography and z990 integrated cryptography, zSeries® firewall technologies, LDAP, and
Enterprise identity mapping (EIM)

Volume 7: Printing in a z/OS environment, Infoprint® Server and Infoprint Central

Volume 8: An introduction to z/OS problem diagnosis

Volume 9: z/OS UNIX® System Services

Volume 10: Introduction to z/Architecture® , zSeries processor design, zSeries connectivity,
LPAR concepts, HCD, and HMC

Volume 11: Capacity planning, performance management, WLM, RMF™ , and SMF
© Copyright IBM Corp. 2007. All rights reserved. ix

The team that wrote this book
This book was produced by a team of specialists from around the world working at the
International Technical Support Organization, Poughkeepsie Center.

Paul Rogers is a Consulting IT Specialist at the International Technical Support
Organization, Poughkeepsie Center. He writes extensively and teaches IBM classes
worldwide on various aspects of z/OS, z/OS UNIX, JES3, and Infoprint Server. Before joining
the ITSO 19 years ago, Paul worked in the IBM Installation Support Center (ISC) in
Greenford, England providing OS/390® and JES support for IBM EMEA and the Washington
Systems Center. He has worked for IBM for 39 years.

David Carey is a Senior IT Advisory Specialist with the IBM Support Center in Sydney,
Australia, where he provides defect and non-defect support for CICS®, CICSPlex/SM, the
WebSphere® MQ family of products, and z/OS. David has been working in the IT industry for
25 years and has written extensively about diagnostic processes for the ITSO.

Peter Hilger is an IT Specialist at the ITS Technical Support Center, Mainz, Germany,
working with defect-related support for customers.

Become a published author
Join us for a two- to six-week residency program! Help write a book dealing with specific
products or solutions, while getting hands-on experience with leading-edge technologies. You
will have the opportunity to team with IBM technical professionals, Business Partners, and
Clients.

Your efforts will help increase product acceptance and customer satisfaction. As a bonus, you
will develop a network of contacts in IBM development labs, and increase your productivity
and marketability.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks® in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
x ABCs of z/OS System Programming Volume 8

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Chapter 1. z/OS problem diagnosis fundamentals

There should be a staff of people who diagnose software problems that occur while running
the operating system. These people are usually system programmers for the installation.

If an installation does not wish to debug the problem or does not have the source code
involved in the problem, use a diagnostic procedure to collect the problem data needed for
reporting the problem to IBM. IBM will debug the problem and provide a fix.

If an installation wishes to debug the problem and has the source code, use a diagnostic
procedure to collect problem data. The installation's diagnostician can use this data to debug
the problem. If the problem is in IBM code, the diagnostician should report the problem to
IBM.

To perform problem determination in a z/OS system address space, it may become
necessary to determine the cause of the problem by searching problem databases, and, if
necessary, reporting the problem to the IBM support center. This applies to a customer
support person who can troubleshoot problems, such as the system programmer or system
administrator, an experienced security administrator, or an experienced storage
administrator.

The steps taken to investigate and analyze a problem are as follows:

� Problem determination

� Determining system problem indications

� Analyzing logs and error information

� Looking at dumps and traces

1

© Copyright IBM Corp. 2007. All rights reserved. 1

1.1 Problem identification

Figure 1-1 Problem determination

Identifying the problem
A system problem can be described as any problem on your system that causes work to be
stopped or degraded. The steps involved in diagnosing these problems are different for each
type of problem. Before you can begin to diagnose a system problem, however, you have to
know what kind of problem you have. It may be either a hardware or software error.

Problem identification is often not a straightforward process, but an investigative exercise that
requires a structured method that will enable the correct initial assessment to be made. This
initial phase is important because decisions you make now relating to diagnostic data
collection will influence the speed of the resolution.

In an ideal world, the programs you write would run perfectly, and never encounter an error,
either software or hardware. In the real world, programs do encounter errors that can result in
the premature end of the program's processing. These errors could be caused by something
your program does, or they could be beyond your program's control.

Software errors
MVS™ allows you to provide something called recovery for your programs; that means you
can anticipate and possibly recover from software errors that could prematurely end a
program. To recover from these errors, you must have one or more user-written routines
called recovery routines. The general idea is that, when something goes wrong, you have a
recovery routine standing by to take over, fix the problem, and return control to your program
so that processing can complete normally; if the problem cannot be fixed, the recovery

Hard or Software
 Error?
2 ABCs of z/OS System Programming Volume 8

routine would provide information about what went wrong. If correctly set up, your recovery
should, at the very least, provide you with more information about what went wrong with your
program than you would have had otherwise.

Hard errors
If, in a multiprocessing system, a failure occurs in one central processor, the system invokes
alternate central processor recovery (ACR) on another central processor. The system records
the error as a hard failure that does not cause the processor to end.
Chapter 1. z/OS problem diagnosis fundamentals 3

1.2 What version or release is running

Figure 1-2 What version or release am I running

What release is running
Different platforms use different commands to show you product information. With many
environments now comprising combinations of different platforms, operating systems and
products all interact with the z/OS operating system in a distributed topology.

This information is vital to ensure that during problem analysis, we know exactly what system
and product level we are dealing with and what maintenance has been applied to the product
or module that is failing.

The sources of this information vary from the most obvious source, the system and job logs,
to far more detailed interrogation using SMP/E and dump interrogation via IPCS.

In this chapter we discuss how to locate this important information.

How to get version or release information
In z/OS, the job log often shows release information generated during the start sequence for
a product. Figure 1-3 shows an example of the CICS startup message written to the CICS job
log.

Note: Do not overlook the most obvious source of release information that is often
recorded in the console or job log messages generated during startup of the operating sys-
tem or product.

z/OS ?

CICS ?

?
APPC

RACF

IMS

DB2

TCPIP
RMF

iplinfo

z/OSz/OS
4 ABCs of z/OS System Programming Volume 8

Figure 1-3 CICS startup message

IPLINFO command
Very useful is the DISPLAY IPLINFO console command. It will show the following:

RESPONSE=MCEVS1
 IEE254I 19.41.34 IPLINFO DISPLAY 911
 SYSTEM IPLED AT 16.01.08 ON 03/09/2005
 RELEASE z/OS 01.04.00 LICENSE = z/OS
 USED LOAD00 IN SYS1.IPLPARM ON 8120
 ARCHLVL = 2 MTLSHARE = N
 IEASYM LIST = 00
 IEASYS LIST = 00
 IODF DEVICE 8120
 IPL DEVICE 8101 VOLUME VS14R1

ABEND symptom string
The ABEND symptom string that is written to the master console and system log shows
relevant release and maintenance information. Figure 1-4 shows an example of a CICS
abend message in the MVS SYSLOG.

Figure 1-4 CICS abend message in MVS syslog

This indicates that the CICS release in this case is R530 (known as CICS/TS 1.3) and the
module where the failure was detected, DFHFCDN, has PTF UQ56477 applied. The PIDS
field identifies the product compid.

WebSphere MQ and IMS releases
Figure 1-5 shows how WebSphere MQSeries® for z/OS displays the release level in the MQ
MSTR joblog.

Figure 1-5 WebSphere MQ for z/OS version information

Figure 1-6 displays the IMS™ release information that is written to the IMS CTL joblog.

Figure 1-6 IMS Version information written to the joblog

DFHSI1500 SCSCPAA1 CICS startup is in progress for CICS Transaction Server Ver-
sion 3.1.0

15.12.09 STC05964 +DFHME0116 CBNZPF00
(Module:DFHMEME) CICS symptom string for message
DFHFC0002 is PIDS/565514700 LVLS/530 MS/DFHFC0002 RIDS/DFHFCDN
PTFS/UQ56477 PRCS/00000445

CSQY000I +MQT1 IBM WebSphere MQ for z/OS V5.3.1

DFSAOE00 - IMSID IMS VERSION SMPLEVEL GEN DATE GEN TYPE 869
 IMST 610 34C 031112 MODBLK
Chapter 1. z/OS problem diagnosis fundamentals 5

1.3 Waits, system hangs, and abends

Figure 1-7 Problem determination

System problem indication
For the failure of an application program or program product, the program requests a
SYSMDUMP dump.

If the system waits, hangs, or enters a loop, the operator requests a stand-alone dump.

Stand-alone dumps
The stand-alone dump program produces a high-speed, unformatted dump of main storage
and parts of paged-out virtual storage on a tape device or a direct access storage device
(DASD). The stand-alone dump program, which you create, must reside on a storage device
that can be used to IPL.

Produce a stand-alone dump when the failure symptom is a wait state with a wait state code,
a wait state with no processing, an instruction loop, or slow processing.

Use a stand-alone dump when:

� The system stops processing.

� The system enters a wait state with or without a wait state code.

� The system enters an instruction loop.

� The system is processing slowly.

ERROR

ABEND0C4

WAIT064

System HANG

I/O Errors
6 ABCs of z/OS System Programming Volume 8

These dumps show main storage and some paged-out virtual storage occupied by the
system or stand-alone dump program that failed. Stand-alone dumps can be analyzed using
IPCS.

Abends
The term that is used most often here in relation to system or application problems is “abend”,
which stands for abnormal end. Later we will discuss the different types of abends and also
some other key factors that can affect system and application performance. We will also
discuss some of the tools that can assist with determining what is occurring at a given point in
time of the system. The following shows the different problem areas:

� Application program abends

� System program abends

� I/O errors

� System wait states

� System, subsystem, and application hangs

� System, subsystem, and application loops

Note: For additional information, see Appendix A-28, “Flowchart for loops and hangs” on
page 281.
Chapter 1. z/OS problem diagnosis fundamentals 7

1.4 Logging messages

Figure 1-8 Problem determination

Logging messages and error information
On z/OS there are multiple choices to log messages and error related information. It depends
on the installation settings and job-related options. The different log scenarios are shown in
the following sections.

System log (SYSLOG) or console log
The system log (SYSLOG) is a data set residing in the primary job entry subsystem's spool
space. It can be used by application and system programmers to record communications
about problem programs and system functions. The operator can use the LOG command to
add an entry to the system log.

Operations log (OPERLOG)
The operations log (OPERLOG) is a log stream that uses the system logger to record and
merge communications about programs and system functions from each system in a sysplex.
Only the systems in a sysplex that have specified and activated the operations log will have
their records sent to OPERLOG. For example, if a sysplex has three systems, SYS A, SYS B,
and SYS C, but only SYS A and SYS B activate the operations log, then only SYS A and SYS
B will have their information recorded in the operations log.

JESMSGLG output data set
The JESMSGLG output data set for each job in the system contains system messages
related to that job.

EREP

System Messages

Sysplex-wide
Messages

SYS1,LOGRECSYS1,LOGREC

OPERLOGOPERLOG

SYSLOGSYSLOG

JESMSGLG data set
8 ABCs of z/OS System Programming Volume 8

Error log (logrec)
When an error occurs, the system records information about the error in the logrec data set or
the logrec log stream. The information provides you with a history of all hardware failures,
selected software errors, and selected system conditions. Use the Environmental Record,
Editing, and Printing program (EREP):

� To print reports about the system records

� To determine the history of the system

� To learn about a particular error

Use the records in the logrec data set or the logrec log stream as additional information when
a dump is produced. The information in the records will point you in the right direction while
supplying you with symptom data about the failure.

You clear the logrec data set when it is full or nearly full. To initialize or reinitialize it, use the
service aid program IFCDIP00. To clear a full logrec data set, use EREP. IFCDIP00 creates a
header record and a time stamp record for the logrec data set.

Note: The logrec data set is an unmovable data set. If you attempt to move it after IPL
using a program, such as a defragmentation program, your system will experience
difficulty both reading from and writing to the data set.
Chapter 1. z/OS problem diagnosis fundamentals 9

1.5 Dumps and traces

Figure 1-9 Problem determination

System dumps
A system generates a system dump when a severe error occurs if the dump is not
suppressed by dump analysis and elimination (DAE). System dumps can also be
user-initiated. A system dump creates a picture of an address space memory at the time of an
error or after entering the dump command. A stand-alone dump creates a picture of all
activities in the system. The following dumps can be initiated or requested by definition:

� Abend dumps

� SNAP dumps

� Stand-alone dumps

� SVC dumps

� Dumps triggered by an SLIP (serviceability level indication processing)

Traces
Another useful source of diagnostic data is the trace. Tracing collects information that
identifies ongoing events that occur over a period of time during system initialization and
operation. Some traces are running all the time so that trace data will be available in the event
of a failure. Other traces must be explicitly started to trace a defined event.

� Component trace (CTRACE)

� Master trace (MTRACE)

Error Data

Trace
 Data

SYS1.DUMP00SYS1.DUMP00

SYS1.TRACESYS1.TRACE
10 ABCs of z/OS System Programming Volume 8

� System trace (SYSTRACE)

� Getmain/Freemain trace (GFS)

� SMS trace

There are more traces that can be activated related to different components such as VIT
VTAM internal trace. Normally the traces are written into a storage buffer, but if you would like
to trace a longer time period you may use Generalized Trace Facility (GTF). GTF collects the
trace data and stores it on a DASD volume.
Chapter 1. z/OS problem diagnosis fundamentals 11

1.6 Tools and service aids

Figure 1-10 Tools and service aids

Tools and service aids
The following tools and service aids are provided by MVS for problem diagnosis.

ABEND dump Use an ABEND dump when ending an authorized program or problem
program because of an uncorrectable error. The dump shows:

� The virtual storage for the program requesting the dump
� System data associated with the program

The system can produce three types of ABEND dumps, SYSABEND,
SYSMDUMP, and SYSUDUMP. Each dumps different areas. Select the
dump that gives the areas needed for diagnosing your problem. The
IBM-supplied defaults for each dump are:

� SYSABEND dump - The largest of the ABEND dumps, containing a
summary dump for the failing program plus many other areas useful
for analyzing processing in the failing program.

� SYSMDUMP dump - Contains a summary dump for the failing
program, plus some system data for the failing task. SYSMDUMP
dumps are the only ABEND dumps that you can format with IPCS.

� SYSUDUMP dump - The smallest of the ABEND dumps, containing
data and areas only about the failing program.

SNAP dump Use a SNAP dump when testing a problem program. A SNAP dump
shows one or more areas of virtual storage that a program, while running,

Dumps

ABEND dump - SNAP dump - Stand-Alone dump -
SVC dump

Traces

Component trace - GFS trace - GTF trace - Master
trace - System trace

Service aids

AMBLIST - Common storage tracking - DAE - IPCS -
Logrec data set - SLIP traps - SPZAP
12 ABCs of z/OS System Programming Volume 8

requests the system to dump. A series of SNAP dumps can show an
area at different stages in order to picture a program's processing,
dumping one or more fields repeatedly to let the programmer check
intermediate steps in calculations. SNAP dumps are preformatted; you
cannot use IPCS to format them.

Stand-alone dump Use a stand-alone dump when:

� The system stops processing.
� The system enters a wait state with or without a wait state code.
� The system enters an instruction loop.
� The system is processing slowly.

These dumps show main storage and some paged-out virtual storage
occupied by the system or stand-alone dump program that failed.
Stand-alone dumps can be analyzed using IPCS.

SVC dump SVC dumps can be used in two different ways:

� Most commonly, a system component requests an SVC dump when
an unexpected system error occurs, but the system can continue
processing.

� An authorized program or the operator can also request an SVC
dump when they need diagnostic data to solve a problem.

SVC dumps contain a summary dump, control blocks, and other system
code, but the exact areas dumped depend on whether the dump was
requested by a macro, command, or SLIP trap. SVC dumps can be
analyzed using IPCS.

Component trace Use a component trace when you need trace data to report an MVS
component problem to the IBM Support Center. Component tracing
shows processing within an MVS component. Typically, you might use
component tracing while recreating a problem. The installation, with
advice from the IBM Support Center, controls which events are traced for
a component.

GFS trace Use GFS trace to collect information about requests for virtual storage
through the GETMAIN, FREEMAIN, and STORAGE macros.

GTF trace Use a GTF trace to show system processing occurring in the system over
time. The installation controls which events are traced. GTF tracing uses
more resources and processor time than a system trace. Use GTF when
you are familiar enough with the problem to pinpoint the one or two
events required to diagnose your system problem. GTF can be read to an
external data set as well as a buffer.

Master trace Use the master trace to show the messages to and from the master
console. Master trace is useful because it provides a log of the most
recently issued messages. These can be more pertinent to your problem
than the messages accompanying the dump itself.

System trace Use system trace to see system processing occurring in the system over
time. System tracing is activated at initialization and, typically, runs
continuously. It records many system events, with minimal detail about
each. The events traced are predetermined, except for branch tracing.
This trace uses fewer resources and is faster than a GTF trace.

AMBLIST Use AMBLIST when you need information about the content of load
modules and program objects or when you have a problem related to the
modules on your system. AMBLIST is a program that provides lots of
data about modules in the system, such as a listing of the load modules,
Chapter 1. z/OS problem diagnosis fundamentals 13

map of the CSECTs in a load module or program object, list of
modifications in a CSECT, map of modules in the LPA (link pack area),
and a map of the contents of the DAT-on nucleus.

Common storage Use common storage tracking to collect data about requests to obtain or
free storage in CSA, ECSA, SQA, and ESQA. This is useful to identify
jobs or address spaces using an excessive amount of common storage
or ending without freeing storage. Use RMF or the IPCS VERBEXIT
VSMDATA subcommand to display common storage tracking data.

DAE Use dump analysis and elimination (DAE) to eliminate duplicate or
unneeded dumps. This can help save system resources and improve
system performance.

IPCS Use IPCS to format and analyze dumps, traces, and other data. IPCS
produces reports that can help in diagnosing a problem. Some dumps,
such as SNAP and SYSABEND and SYSUDUMP ABEND dumps, are
preformatted—they are not formatted using IPCS.

Logrec data set Use the logrec data set as a starting point for problem determination. The
system records hardware errors, selected software errors, and selected
system conditions in the logrec data set. Logrec information gives you an
idea of where to look for a problem, supplies symptom data about the
failure, and shows the order in which the errors occurred.

SLIP traps Use serviceability level indication processing (SLIP) to set a trap to
catch problem data. SLIP can intercept program event recording (PER)
or error events. When an event that matches a trap occurs, SLIP
performs the problem determination action that you specify:

� Requesting or suppressing a dump.

� Writing a trace or a logrec data set record.

� Giving control to a recovery routine.

� Putting the system in a wait state.

SPZAP Use the SPZAP service aid to dynamically update and maintain
programs and data sets. For problem determination, you can use SPZAP
to:

� Fix program errors by replacing a few instructions in a load module or
member of a partitioned data set (PDS).

� Insert an incorrect instruction into a program to force an abend or
make a SLIP trap work.

� Alter instructions in a load module to start component trace.

� Replace data directly on a direct access device to reconstruct a
volume table of contents (VTOC) or data records that were damaged
by an input/output (I/O) error or program error.
14 ABCs of z/OS System Programming Volume 8

1.7 Tools and service aids

Figure 1-11 Diagnostic tools and service aids enhanced in z/OS V1R7

Tools and service aids
Tools include dumps and traces, while service aids include the other facilities provided for
diagnosis.

For z/OS V1R7, the following enhancements have been made to the tools and service aids:

SPZAP SPZAP is a service aid program that operates in problem state. It allows
you to dynamically update and maintain programs and data sets. SPZAP
can be used to apply fixes to modules or programs that need to be at
current levels of the operating system.

SPZAP has been enhanced to support DSNTYPE=LARGE data sets.
DSNTYPE=LARGE data sets are like conventional sequential data sets
except for the fact that they may span more than 64K tracks per volume.

SADMP You need to make several decisions when planning for a stand-alone
dump. You implement most of these decisions when you create the
stand-alone dump program, either when you code the AMDSADMP
macro, when you assemble the macro, or when you use the SADMP
option on the IPCS Dialog.

SADMP is the most fundamental diagnostic tool. The focus in z/OS V1R7
is to get SADMPs captured quickly and effectively when they are needed.
Installations that are enlarging the sizes of their LPARs should consider
the effect on SADMP production and analysis in their planning.

SPZAP

SADMP

SDUMP

System trace

External traces (GTF and CTRACE)

SLIP

IPCS
Chapter 1. z/OS problem diagnosis fundamentals 15

SDUMP An SVC dump provides a representation of the virtual storage for the
system when an error occurs. Typically, a system component requests
the dump from a recovery routine when an unexpected error occurs.
However, an authorized program, or the operator, can also request an
SVC dump when diagnostic dump data is needed to solve a problem.

SDUMP is the preferred dumping tool in MVS via its many faces: DUMP
command, SYSMDUMP, and transaction dump. SDUMP is improved in a
number of areas and also focused on better analysis aids, partly to help
the traditional audience of system programmers and vendor support
personnel and partly to help traditional users of formatted dumping tools
who are migrating to unformatted dumping at an increasing rate in the
last several years.

External trace Transaction trace supports the use of an external writer for processing
transaction trace records. An external writer is specified on the initial
command that activates transaction trace or is specified standalone while
transaction trace is active.

The changes for external trace writing support increased system speed,
complexity, and size.

SLIP The SLIP command controls SLIP (serviceability level indication
processing), a diagnostic aid that intercepts or traps certain system
events and specifies what action to take. Using the SLIP command, you
can set, modify, and delete SLIP traps.

For SLIP, improvements have been included in z/OS V1R7 to make it
easier to trap circumstances where dumping, tracing, or related actions
need to be taken.

IPCS The interactive problem control system (IPCS) is a tool provided in the
MVS system to aid in diagnosing software failures. IPCS provides
formatting and analysis support for dumps and traces produced by MVS,
other program products, and applications that run on MVS.

For IPCS, enhancements in z/OS V1R7 include support for large block
sizes, compression, and striping. You can limit the scope of analysis with
the PROFLE command, and report handling is enhanced to enable you
to focus only on pertinent information.
16 ABCs of z/OS System Programming Volume 8

1.8 Problem analysis with IPCS

Figure 1-12 Problem determination with IPCS

Dump debug tool IPCS
The most powerful diagnostic tool at your disposal is Interactive Program Control System
(IPCS). IPCS is a tool provided in the MVS system to aid in diagnosing software failures.
IPCS provides formatting and analysis support for dumps and traces produced by MVS, other
program products, and applications that run on MVS. There is an easy way to use IPCS to get
search arguments that can be used to look for already known problems.

SVC dumps, stand-alone dumps, and some traces are unformatted and need to be formatted
before any analysis can begin. IPCS provides the tools to format dumps and traces in both an
online and batch environment. It provides you with commands that will let you interrogate
specific components of the operating system, and enables you to review storage locations
associated with an individual task or control block. IPCS allows you to quickly review and
isolate key information that will assist with your problem determination process.

Some dumps such as CEEDUMP are in a readable format. To debug these dumps you have
to browse them.

IPCS

SYS1.TRACESYS1.TRACE

SYS1.DUMPSYS1.DUMP
Chapter 1. z/OS problem diagnosis fundamentals 17

1.9 SMP/E and maintenance

Figure 1-13 Problem determination with SMP/E

Helpful tool and program to get maintenance information
Analyzing a dump you may find that you need a maintenance level for a module you found in
the storage area where the problem occurred.

SMP/E is a tool designed for managing the installation of software products on your z/OS
system and to track the modifications you make to those products. Usually, it is the system
programmer’s responsibility to ensure that all software products and their modifications are
properly installed on the system. Using SMP/E you can check which maintenance has been
installed for different components.

Dump information does not always provide the module name. Instead, it provides the Load
Module Name (LMOD). LMOD is a group of modules linked together. To find the module
name you are interested in, you need to run the JCL for PGM=AMBLIST. The output can list
either the modules or modules and the source. This selection depends on what you are
looking for.

PGM=AMBLIST
The AMBLIST service aid prints formatted listings of modules to aid in problem diagnosis.
Use it to list the CSECTs in the load module. Use the offset into the load module to identify
the CSECT containing the failing instruction. Then subtract the starting address of the
CSECT from the instruction address to obtain the offset into the CSECT.

SMP/E

EXEC PGM=AMBLIST

HILG.JOB.CNTLHILG.JOB.CNTL

SMP.GLOBAL.CSISMP.GLOBAL.CSI
18 ABCs of z/OS System Programming Volume 8

AMBLIST can be used to provide listings showing:

� The attributes of program modules

� The contents of the various classes of data contained in a program module, including
SYM records, IDR records, external symbols (ESD entries), text, relocation entries (RLD
entries), and ADATA

� A module map or cross-reference for a program module

� The aliases of a program module, including the attributes of the aliases

AMBLIST problem data
AMBLIST provides the following problem data:

� Formatted listing of an object module

� Map of the control sections (CSECTs) in a load module or program object

� List of modifications to the code in a CSECT

� Map of all modules in the link pack areas (LPAs)

� Map of the contents of the DAT-on nucleus (The map no longer represents the IPL version
and message AMB129I will be issued.)
Chapter 1. z/OS problem diagnosis fundamentals 19

1.10 Using SMP/E and dumps

Figure 1-14 Using SMP/E and dumps for release and product information

Using SMP/E
In z/OS, SMP/E can be used to verify product and PTF levels. SMP/E is used to manage and
maintain information related to system and product installation and maintenance. With SMP/E
you can interrogate what has been installed into the product libraries, but this does not
necessarily reflect what has been migrated to a production environment. So take care when
assuming that the maintenance that is supposed to have fixed a problem, has actually been
moved into the production data sets.

SMP/E does not manage the migration of upgrades. Figure 1-15 shows the result of an
SMP/E CSI GZONE query. This displays the Function Modification Identifiers (FMIDs), or,
more specifically, product components that have been received into the global zone data
sets. This is the first installation level. The next is to APPLY the product or maintenance into
the TARGET libraries, then finally ACCEPT the product or maintenance into the DLIBs, or
distribution libraries.

Use SMP/E to verify product and PTF levels

Use the SMP/E CSI GZONE query

Displays FMIDs in global zone data sets

CROSS-ZONE QUERY

Maintenance levels for load modules

IPCS can be used for operating system releases

Format the CVT with the CBFORMAT command

Release levels and FMIDs

Product maintenance levels

CICS - VERBX DFHPD530 'LD=1'

DB2 - run DIAGNOSE DISPLAY MEPL utility
20 ABCs of z/OS System Programming Volume 8

Figure 1-15 SMP/E SMPCSI query for the GLOBAL zone

CROSS-ZONE QUERY
The SMP/E CROSS-ZONE QUERY panel lets you interrogate the maintenance level of a
specific module or load module. Figure 1-16 shows an example of a cross-zone query
request against the DFHSMGF module. This shows us that in the target library this module
has an RMID level of UQ68396, which means that a PTF (UQ68396) has been applied to this
module.

Figure 1-16 SMP/E Cross-Zone Query for a MODule

Getting release information from the dump
IPCS, the Interactive Problem Control System, which we discuss later, can also be used to
verify the operating system or product release, as well as abend symptom data as follows:
Using IPCS, we can format the Communication Vector Table (CVT) to determine the release

 Entry Type: GZONE Zone Name: GLOBAL
 Entry Name: GLOBAL Zone Type: GLOBAL

 Default OPTIONS: CICSOPT Related Zone:

 -------- -------- -------- -------- -------- -------- --------
ZONES CIC22DZ CIC22TZ
SRELS C150
FMIDS DELCIPM HBDD110 HCCV320 HCI6200 HCMZ100 HCMZ110 HCMZ200
 HCP2200 H0B5110 H0B7110 H0Z2110 H24D120 H24D130 JCCV32B
 JCI620D JCI6201 JCI6202 JCI6203 JCMZ111 JCMZ130 JCMZ201
 JCMZ230 JCP2202

Entry Type: MOD
Entry Name: DFHSMGF

To return to the previous panel, enter END .

To select an entry from a zone, enter S next to the zone.

 * - Entry not found in zone.
 ** - Zone could not be allocated or is not initialized.

 -------------------- Status -----------------------------------
 ZONE FMID RMID LASTUPD DISTLIB UMID(S)
 -------- -------- -------- -------- -------- -------- -------- --------
 CIC22DZ HCI6200 HCI6200 HCI6200 ADFHMOD
 CIC22TZ HCI6200 UQ68396 HCI6200 ADFHMOD
 GLOBAL *

Note: What is reflected in the SMP/E environment does not necessarily reflect what is run-
ning in your problem system environment. It shows what maintenance has been received,
applied, and accepted, but does not show what libraries or data sets have been migrated to
higher level systems.
Chapter 1. z/OS problem diagnosis fundamentals 21

of z/OS that is running. The IPCS command that can be used is the CBFORMAT command,
which means Control Block Format, and is usually abbreviated as CBF. Figure 1-17 shows
the result of an IPCS CVT format.

Figure 1-17 IPCS Communication Vector Table format

This is the first line of the formatted CVT control block and tells us that we are running z/OS
V1R2, as indicated by the PRODN value, SP7.0.2, and the FMID for this release of z/OS is
HBB7705, as indicated in the PRODI field. The MDL field indicates that this version of z/OS is
running on a 2064 processor.

In CICS, if we format the dump using IPCS VERBX ‘CSA=2’ we can review the data at offset
x’9F’ which displays the CICS release level; for example, 53 or 62.

We can also interrogate the maintenance that has been applied to modules using IPCS as
follows:

In CICS, for example, issue the IPCS command VERBX DFHPD530 ‘LD=1’ and locate the
PROGRAM STORAGE MAP. Figure 1-18 on page 22 shows an example of an IPCS format of
the CICS Loader domain.

Figure 1-18 CICS IPCS format of the Loader domain

In DB2® you can run the DIAGNOSE DISPLAY MEPL utility to format the module
information. Figure 1-19 shows an example of the DB2 Diagnose Display MEPL process.

Figure 1-19 DB2 Diagnose Display MEPL output

CBF CVT

CVT: 00FCD2C8
-0028 PRODN... SP7.0.2 PRODI... HBB7705 VERID... MDL..... 2064

DFHCSA 8004CE20 DFHKELCL 0004C000 530 ESA530 02/20/99 18.36
 DFHKELRT 0004C380 530 ESA530 02/20/99 18.36
 DFHCSAOF 0004C600 0530 UQ43786 I 01/06 13.31
 DFHCSA 0004CBD8 0530 UQ43786 I 01/06 13.31
 DFHKESFM 0004D0C8 530 UQ39652 01/27/00 15.20
 DFHKESGM 0004D4A0 530 UQ39652 01/27/00 15.20
 DFHKERCD 0004DCC8 530 ESA530 02/20/99 18.36
 DFHKERER 0004DEA0 530 ESA530 02/20/99 18.36

....DSNAA 10/22/9811.44
....DSNAPRH 07/10/9813.28
....DSNFMNFM07/10/9814.38
... DSNFPMSG07/10/9814.42
....DSNFSAMG07/10/9814.42
....DSNUBBCD09/30/9814.29
....DSNUBBCM06/11/02UQ66957
....DSNUBBCR08/20/02UQ69047
... DSNUBBID08/29/02UQ69311
....DSNUBBOP12/02/01UQ60569
....DSNUBBRD04/27/99UQ29552
....DSNUBBUM01/17/02UQ61891
22 ABCs of z/OS System Programming Volume 8

1.11 SDSF and RMF

Figure 1-20 Problem determination with SDSF

System Display and Search Facility (SDSF)
SDSF is a program that runs on TSO/E and uses Interactive System Productivity Facility
(ISPF) panels.

SDSF provides a powerful and secure way to monitor, manage and control your z/OS
sysplex. Its easy-to-use interface lets you control the following:

� Jobs and output

� Devices, such as printers, readers, lines, and spool offloaders

� System resources, such as WLM scheduling environments, the members of your JES2
MAS, and JES2 job classes

� System log and action messages

Resource Measurement Facility (RMF)
RMF is designed to ease the management of single or multiple system workloads and to
enable faster reaction to system delays. Detecting a possible bottleneck early means that
corrective actions can be taken earlier. System delays are avoided or at least remedied at an
early stage.

SDSF
RMF
Chapter 1. z/OS problem diagnosis fundamentals 23

Using RMF for problem analysis
Use output from RMF, SMF, or another system monitoring program to look for problems. Find
someone in your installation who is familiar with the program and can interpret the output.
Some of the kinds of problems you should look for are:

� A program using a lot of storage, whether it is real, virtual, auxiliary or extended storage

� Data set contention

� ENQ contention

� Tuning problems

� System running over capacity
24 ABCs of z/OS System Programming Volume 8

Chapter 2. Problem resolution steps

As a system programmer the important part of your job is to keep your system running and
avoid application slowdowns or outages. If an error or problem occurs you should be able to
collect all necessary information and documentation to fix it or to ask for assistance providing
the collected documentation. If you need IBM support you should provide also a severity
indication depending on the system impact. You should be able to find a search argument
according to the error information to check for known problems or calling IBM support center.

The following problem resolution steps provide a debug guideline:

� Identifying and document the problem

� Prioritize the problem

� Analyze the problem and ask for assistance if necessary

� Implement the resolution and close the problem

2

© Copyright IBM Corp. 2007. All rights reserved. 25

2.1 Identifying a problem

Figure 2-1 Identifying a problem

What caused the problem
Depending on the system or application impact in case of an error the most important
questions you must ask include:

� Is the process that is causing the problem a new procedure, or has it worked successfully
before?

� If it was an existing procedure that was previously successful, what has changed?

� What messages are being generated that could indicate what the problem is? These could
be presented on the terminal if the process is conversational, or in the batch or subsystem
job log, or in the system log (SYSLOG).

� Can the failure be reproduced, and if so what steps are being performed?

� Has the failing process generated a dump?

All of these questions will enable you to develop an appropriate plan of action to aid with the
resolution. You can never be criticized for providing too much diagnostic data, but too little
information only delays the solving of the problem.

Note: Review the z/OS MVS System Messages, SA22-763x and z/OS MVS Systems
Codes, SA22-7626 manuals.

Document the problem
Messages
26 ABCs of z/OS System Programming Volume 8

Document the problem
Documentation of the problem and the analysis steps taken can assist with not only initial
resolution, but will also assist if the problem occurs again. For larger more complex problems
regular documentation during the analysis process can highlight areas that will become more
crucial as the investigation progresses. This will enable you to develop a flow chart and
reference point listing that can be referred to throughout your analysis. Document the final
resolution for future reference.

Identifying the problem
A system problem can be described as any problem on your system that causes work to be
stopped or degraded. The steps involved in diagnosing these problems are different for each
type of problem.

Before you can begin to diagnose a system problem, however, you have to know what kind of
problem you have. To identify a system problem, look at the following:

� System processing witnessed by the operator.

� The dump, in which the system records information about the system problem. It is
important to remember that the error triggering a dump might be a symptom itself, and the
information needed to diagnose the root cause might not be captured in that dump.
Depending on what type of dump the system or the operator takes, you can determine the
type of system problem you need to diagnose and whether you will need to collect
additional data.

� The logrec data set, which contains a history of the errors encountered by the system.

� The console log.
Chapter 2. Problem resolution steps 27

2.2 Prioritize problem resolution

Figure 2-2 Prioritize problem resolution

Prioritize problem resolution
Your prime objective as a system programmer is to ensure system availability, and in the
event of a major subsystem failure, for example, a Customer Information Control System
(CICS) failure, or worse still the whole z/OS system, your focus will be on the speedy
restoration of the system.

Subsystem failures will often generate their own diagnostic data, and the recovery process is
often fairly straightforward. These systems will generally perform cleanup processes during
recovery and thereby restore system availability. If the subsystem fails during recovery, then
immediate problem analysis and resolution will be required.

System down
The worst-case scenario is that your complete z/OS system is down. Swift system recovery is
required, but a decision must be made to determine whether the currently preserved main
storage should be dumped via a stand-alone dump routine prior to the recovery Initial
Program Load (IPL). The IPL process clears main storage; therefore, any failure information
will be lost. The stand-alone dump process will take some time but could be extremely
valuable should the problem reoccur.

Hangs
WAITs

ABEND

System down

I/O Error
28 ABCs of z/OS System Programming Volume 8

System programmer actions
Depending on the nature of the problem, system programmers can take actions related to the
type of problem that has occurred.

Abend Review the dump to determine if further diagnosis is required.

Review system messages to determine the abend's impact on the
installation.

Hang or WAIT Use the DUMP command to obtain an SVC dump. If the SVC dump does not
provide the necessary information, ask the operator to take a stand-alone
dump.

Have the operator check to see whether the system console is responsive. If
it is not, take a stand-alone dump. If it is, take an SVC dump of the user's
address space.

I/O error Check for messages indicating I/O errors.
Chapter 2. Problem resolution steps 29

2.3 Problem severity

Figure 2-3 Reporting the severity of a problem to the IBM Support Center

Report problems to IBM
When you need to report a problem to the IBM Support Center, you will be asked what the
severity of the problem is. We set severity from SEV-1 (highest severity, meaning worst
problems) to SEV-4 (lowest severity, meaning least important problems). It's important to be
realistic when reporting the severity of an issue, so we can prioritize it properly.

Severity 1 (SEV 1)
Production system down, critical business impact, unable to use the product in a production
environment, no workaround is available.

Severity 2 (SEV 2)
Serious problem that has a significant business impact; use of the product is severely limited,
but no production system is continuously down. SEV-2 problems include situations where
customers are forced to restart processes frequently, and performance problems that cause
significant degradation of service but do not render the product totally unusable. In general, a
very serious problem for which there is an unattractive but functional workaround would be
SEV-2, not SEV-1.

Severity 3 (SEV 3)
Problems that cause some business impact but that can be reasonably circumvented;
situations where there is a problem but the product is still usable. For example, short-lived
problems or problems with components that have failed and then recovered and are back in

IBM Support Center

Severity of problem - report to IBM

Four severity levels

Severity 1 (SEV 1)

Severity 2 (SEV 2)

Severity 3 (SEV 3)

Severity 4 (SEV 4)
30 ABCs of z/OS System Programming Volume 8

normal operation at the time the problem is being reported. The default severity of new
problem reports should be SEV-3.

Severity 4 (SEV 4)
This severity is for minor problems that have minimal business impact. While we are all aware
of the pressure that customers and management place on the speedy resolution of their
problems, the correct problem severity enables all involved support teams to react to and
manage the problems according to the “real” severity of the problem. While a “customer is
unhappy SEV1” is in many cases valid for business reasons, it does not preclude the fact that
a customer with a “production system down SEV1” is more important.
Chapter 2. Problem resolution steps 31

2.4 Analyze a problem - ask for assistance

Figure 2-4 Analyze a problem

Analyze the problem
Before you start the process of what could be described as the more complex analysis
procedures, you should review all of the data you currently have that may solve your problem.
Have you:

1. Looked in the system log for any relevant messages or abend information?

2. Looked in the job log for any relevant messages or abend information?

3. Reviewed the meanings of any messages or codes in the relevant manuals?

4. Reviewed the system error log, SYS1.LOGREC, which contains information about
hardware and software failures?

Problem analysis
Problem analysis is, like any process, a skill that develops the more you use it. Of course,
problems vary in their complexity and frequency, and it is possible that tasks requiring this
type of review may be infrequent in your environment. The ultimate aim is to have little need
to perform complex problem diagnosis. This is why a sound methodology is necessary to
assist with your analysis.

It is necessary to retain a focus during the analysis process and be aware that there are often
alternative ways to approach a problem. To ask for assistance with a problem is not a sign of
failure, but an indication you are aware that another person's views could speed up the
resolution. A fresh idea can often stimulate and enhance your thought processes.

IPCS
ISPF
SDSF

Application error

Search argument
Source defect

OPERLOGOPERLOG

SYSLOGSYSLOG

SYS1.LOGRECSYS1.LOGREC

SYS1.DUMP00SYS1.DUMP00
32 ABCs of z/OS System Programming Volume 8

Solving a problem
Solving a problem is a combination of:

1. Your ability to understand the problem.

2. The quality of the diagnostic data you can review.

3. Your ability to use the diagnostic tools at your disposal.

Ask for assistance
You will hopefully be aware that some assistance may be required when you are making little
progress with your diagnosis. What you and your manager are seeking is a speedy
resolution, and it is far more professional to use all the facilities and technical expertise
available. The IBM Support Center is there to assist you with your problems and the
diagnostic data you have collected, and the analysis steps you have already performed will
be of great help to the Support Center when they review the problem.
Chapter 2. Problem resolution steps 33

2.5 Gather Messages and Logrec

Figure 2-5 Gather messages and logrec

Gathering information
Often, the most readily available source of data identifies the key piece of information that will
resolve the problem, and often, this source of data is overlooked. The first places to look
when reviewing a problem are:

� The console log

� The system log

� An error log related to a specific product

� The whole system

While a system dump or a trace is often required, the logs may provide enough detail to solve
the problem. The location of the relevant logs varies from product to product, and system to
system.

Collect and analyze messages and logrec records about the problem. Look at any messages
or software, symptom, and hardware records for logrec around the time of the problem.

Diagnostic data sources
The main sources of diagnostic data are contained in the messages provided by the system
in the following logs:

SYSLOG
OPERLOG
LOGREC
JOBLOG

EREP

OPERLOGOPERLOGSYSLOGSYSLOG SYS1.LOGRECSYS1.LOGREC
34 ABCs of z/OS System Programming Volume 8

� Console log

Messages sent to a console with master authority are intended for the operators. The
system writes in the hard-copy log all messages sent to a console, regardless of whether
the message is displayed.

� SYSLOG

The SYSLOG is a SYSOUT data set provided by the job entry subsystem (either JES2 or
JES3). SYSOUT data sets are output spool data sets on direct access storage devices
(DASD). An installation should print the SYSLOG periodically to check for problems. The
SYSLOG consists of the following:

– All messages issued through WTL macros
– All messages entered by LOG operator commands
– Usually, the hard-copy log
– Any messages routed to the SYSLOG from any system component or program

� Job log

Messages sent to the job log are intended for the programmer who submitted a job.
Specify the system output class for the job log in the MSGCLASS parameter of the JCL
JOB statement.

� OPERLOG

Operations log (OPERLOG) is an MVS system logger application that records and merges
messages about programs and system functions (the hardcopy message set) from each
system in a sysplex that activates OPERLOG. Use OPERLOG rather than the system log
(SYSLOG) as your hardcopy medium when you need a permanent log about operating
conditions and maintenance for all systems in a sysplex.

� Hard-copy log

The hard-copy log is a record of all system message traffic:

– Messages to and from all consoles
– Commands and replies entered by the operator

In a dump, these messages appear in the master trace. With JES3, the hard-copy log is
always written to the SYSLOG. With JES2, the hard-copy log is usually written to the
SYSLOG but can be written to a console printer, if the installation chooses.

� Logrec

Logrec log stream is an MVS System Logger application that records hardware failures,
selected software errors, and selected system conditions across the sysplex. Using a
logrec log stream rather than a logrec data set for each system can streamline logrec error
recording.
Chapter 2. Problem resolution steps 35

2.6 SYSLOG processing

Figure 2-6 SYSLOG processing

SYSLOG processing
The system log (SYSLOG) is a direct access data set that stores messages and commands.
It resides in the primary job entry subsystem's spool space. It can be used by application and
system programmers (through the WTL macro) to record communications about programs
and system functions. You can use the LOG command to add an entry to the system log.

Several kinds of information can appear in the system log:

� Job time, step time, and data from the JOB and EXEC statements of completed jobs
entered by user-written routines

� Operating data entered by programs using a write to log (WTL) macro instruction

� Descriptions of unusual events that you enter using the LOG command

� The hardcopy message set

On z/OS, the SYSLOG can be viewed via the Spool Display and Search Facility (SDSF)
using the LOG option. A small amount of the SYSLOG is also stored in memory and is
included when an address space is dumped. This is referred to as master trace (MTRACE)
data and can be accessed via the IPCS using the VERBX MTRACE command.

LPAR 1 LPAR 2 LPAR 3

Sysplex

SYSLOGSYSLOG SYSLOGSYSLOG SYSLOGSYSLOG
36 ABCs of z/OS System Programming Volume 8

2.7 SYSLOG messages

Figure 2-7 Examples of SYSLOG messages

SYSLOG messages
Figure 2-7 shows an example of the MVS SYSLOG. The time stamps that would normally be
seen to the left of the data shown in the bottom half of the figure are shown in the top part of
the figure.

Message description
A description of the first message in Figure 2-7 follows:

M 0020000 SC70 2005185 19:40:01.33 RMFGAT 00000090

M

0020000

SC70 System name that issued the message

2005185 Julian date (Day 185 of year 2005)

19:40:01.33 Time that the message was issued

RMFGAT Address space name that issued the message

00000090

M 0020000 SC70 2005185 19:40:01.33 RMFGAT 00000090
E 808 00000090
NR4000000 SC70 2005185 19:40:01.97 RMFGAT 00000090
M 0020000 SC70 2005185 19:41:00.43 STC27300 00000090
E 139 00000090
NR4000000 SC70 2005185 19:41:00.93 STC27300 00000090
N FFFF000 SC70 2005185 19:44:35.16 MQSCCHIN 00000090
N FFFF000 SC70 2005185 19:44:35.19 MQSCCHIN 00000090
S
N FFFF000 SC70 2005185 19:44:35.21 MQSCCHIN 00000090
S

IEC070I 203-204,RMFGAT,RMFGAT,SYS00753,3E14,SBOX01,RMF3.SC70.B, 808
IEC070I RMF3.SC70.B.DATA,UCAT.VSBOX01
ERB813I III: ACTIVE MONITOR III DATA SET IS NOW 'RMF3.SC70.A'
IEC070I 203-204,RMFGAT,RMFGAT,SYS00882,3E14,SBOX01,RMF3.SC70.B, 139
IEC070I RMF3.SC70.B.DATA,UCAT.VSBOX01
ERB813I III: ACTIVE MONITOR III DATA SET IS NOW 'RMF3.SC70.A'
+CSQX449I =MQSC CSQXREPO Repository manager restarted
+CSQX037E =MQSC CSQXREPO Unable to get message from
SYSTEM.CLUSTER.COM
MAND.QUEUE, MQCC=2 MQRC=2016
+CSQX448E =MQSC CSQXREPO Repository manager stopping because of
errors. Restart in 600 seconds

--
Chapter 2. Problem resolution steps 37

Message IEC070I
The IEC070I message is displayed on the first 2 lines. A description of the first message in
Figure 2-7 follows in the bottom part of the figure:

IEC070I 203-204,RMFGAT,RMFGAT,SYS00753,3E14,SBOX01,RMF3.SC70.B, 808
IEC070I RMF3.SC70.B.DATA,UCAT.VSBOX01
------------------Message description---------------------------
IEC070I rc[(sfi)]- ccc,jjj,sss,ddname,dev,volser,xxx,dsname,cat

IEC070I message description
Explanation: An error occurred during EOV (end-of-volume) processing for a VSAM data set.

In the message text:

� 203 is the return code (rc). This field indicates the specific cause of the error. For an
explanation of this return code, see message IEC161I.

– sfi is the subfunction information (error information returned by another subsystem or
component). This field appears only for certain return codes, and its format is shown
with those codes to which it applies. When a catalog LOCATE request fails, this field
appears for return code 032 or 034.

� 204 is a problem-determination function (PDF) code. The PDF code is for use by the IBM
Support Center if further problem determination is required. If the PDF code has meaning
for the user, it is documented with the corresponding reason code (rc).

� RMFGAT (ccc) is the job name.

� RMFGAT (sss) is the step name. If the step is part of a procedure, this field contains an
eight-character procedure step name, with trailing blanks, followed by the name of the job
step that called the procedure, without trailing blanks. The two names are not separated
by a comma.

� SYS00753 (ddname) is the data definition (DD) name.

� 3E14 (dev) is the device number, if the error is related to a specific device.

� SBOX01(volser) is the volume serial number, if the error is related to a specific volume.

� RMF3.SC70.B (xxx) is the name of the cluster that contained the data set being
processed when the error was detected, or when not available, the data set name
specified in the DD statement indicated in the access method control block (ACB).

� RMF3.SC70.B.DATA (dsname) is the name of the data set being processed when the error
was detected.

� UCAT.VSBOX01 (cat) is the catalog name.

System programmer response
If the error recurs and the program is not in error, look at the messages in the job log for more
information. Search problem reporting databases for a fix for the problem. If no fix exists,
contact the IBM Support Center. Provide all printed output and output data sets related to the
problem.
38 ABCs of z/OS System Programming Volume 8

2.8 OPERLOG (operations log)

Figure 2-8 OPERLOG processing

OPERLOG
The operations log (OPERLOG) is a log stream that uses the system logger to record and
merge communications about programs and system functions from each system in a sysplex.
The operations log is operationally independent of the system log. An installation can choose
to run with either or both of the logs. If you choose to use the operations log as a replacement
for SYSLOG, you can prevent the future use of SYSLOG.

You can use the operations log (OPERLOG) to record messages and commands from all the
systems in a sysplex. The operations log centralizes log data in a sysplex. The OPERLOG
panel displays the data from a log stream, a collection of log data used by the MVS System
Logger to provide the merged, sysplex-wide log.

OPERLOG message
Following is a message from the OPERLOG—the same message described in Figure 2-7 on
page 37.

M 0020000 SC70 2005185 19:40:01.33 RMFGAT 00000090
E 808 00000090

IEC070I 203-204,RMFGAT,RMFGAT,SYS00753,3E14,SBOX01,RMF3.SC70.B
IEC070I RMF3.SC70.B.DATA,UCAT.VSBOX01

OPERLOGOPERLOG

LPAR 1 LPAR 2 LPAR 3
Sysplex
Chapter 2. Problem resolution steps 39

2.9 Job error logs

Figure 2-9 Display of CICS SYSOUT data sets obtained with the SDSF DA operand

Job error log data sets
Each individual product has its own log file on the z/OS platform that may contain data that
may be valuable when diagnosing a problem. It is particularly important to look for events that
precede that actual failure, because the problem, in many cases, will have been caused by a
previous action. Figure 2-9 shows the SYSOUT data sets that might be associated with a
CICS address space.

The key SYSOUT data sets to review that may provide problem determination data are:

JESMSGLG and MSGUSR

The following data sets will contain Language Environment (LE) problem data usually
associated with application problems:

CEEMSG and CEEOUT

MSGUSR data set
Figure 2-10 on page 41 shows an example of some transaction abend data included in the
MSGUSR SYSOUT data set.

NP DDNAME StepName ProcStep DSID Owner
 JESJCLIN 1 CICSTS
 JESMSGLG JES2 2 CICSTS
 JESJCL JES2 3 CICSTS
 JESYSMSG JES2 4 CICSTS
 $INTTEXT JES2 5 CICSTS
 CAFF SCSCPAA1 101 CICSTS
 CINT SCSCPAA1 103 CICSTS
 DFHCXRF SCSCPAA1 104 CICSTS
 COUT SCSCPAA1 105 CICSTS
 CEEMSG SCSCPAA1 106 CICSTS
 CEEOUT SCSCPAA1 107 CICSTS
 PLIMSG SCSCPAA1 108 CICSTS
 CRPO SCSCPAA1 109 CICSTS
 MSGUSR SCSCPAA1 110 CICSTS
40 ABCs of z/OS System Programming Volume 8

Figure 2-10 CICS MSGUSR SYSOUT data set sample data

JESMSGLG data set
The CICS JESMSGLG SYSOUT data set includes information related to CICS startup and
errors related to system problems, not specifically transaction related. Figure 2-11 is a
sample taken from the CICS JES Message Log (JESMSGLG).

DFHIR3783 04/11/2005 01:25:50 SCSCPTA2 Transaction SX2 termid E39 -
Connected transaction abended with message DFHAC2206 01:25:50 SCSCPAA4
Transaction SX2
failed with abend AFCV. Updates to local recoverable resources backed out.
DFHAC2236 04/11/2005 01:25:50 SCSCPTA2 Transaction SX2 abend AZI6 in program
*UNKNOWN
term PB09. Updates to local recoverable resources will be backed out.
DFHAC2262 04/11/2005 01:25 (sense code 0824089E).
DFHAC2206 01:25:50 SCSCPAA4 Transaction SX2 failed with abend AFCV.
Updates to local recoverable resources backed out.
Chapter 2. Problem resolution steps 41

Figure 2-11 CICS JESMSGLG output

+DFHTR0103 TRACE TABLE SIZE IS 64K
+DFHSM0122I SCSCPTA2 Limit of DSA storage below 16MB is 5,120K.
+DFHSM0123I SCSCPTA2 Limit of DSA storage above 16MB is 60M.
+DFHSM0113I SCSCPTA2 Storage protection is not active.
+DFHSM0126I SCSCPTA2 Transaction isolation is not active.
+DFHSM0120I SCSCPTA2 Reentrant programs will not be loaded into read-only
storage
+DFHDM0101I SCSCPTA2 CICS is initializing.
+DFHXS1100I SCSCPTA2 Security initialization has started.
+DFHWB0109I SCSCPTA2 Web domain initialization has started.
+DFHSO0100I SCSCPTA2 Sockets domain initialization has started.
+DFHRX0100I SCSCPTA2 RX domain initialization has started.
+DFHRX0101I SCSCPTA2 RX domain initialization has ended.
+DFHLG0101I SCSCPTA2 Log manager domain initialization has started.
+DFHEJ0101 SCSCPTA2 291
 Enterprise Java domain initialization has started. Java is a
 trademark of Sun Microsystems, Inc.
+DFHDH0100I SCSCPTA2 Document domain initialization has started.
.
+DFHLG0103I SCSCPTA2 System log (DFHLOG) initialization has started.
+DFHLG0104I SCSCPTA2 340
 System log (DFHLOG) initialization has ended. Log stream
 ************************** is connected to structure
 ****************.
+DFHSI1519I SCSCPTA2 The interregion communication session was successfully
started
+DFHWB1007 SCSCPTA2 Initializing CICS Web environment.
+DFHWB1008 SCSCPTA2 CICS Web environment initialization is complete.
+DFHSI8430I SCSCPTA2 About to link to PLT programs during the third stage of
initialization
+EYUNX0001I SCSCPTA2 LMAS PLTPI program starting
+EYUXL0003I SCSCPTA2 CPSM Version 220 LMAS startup in progress
+EYUXL0103E SCSCPTA2 CICSPlex SM subsystem (EYUX) not active
+EYUXL0024I SCSCPTA2 Waiting for CICSPlex SM subsystem activation
42 ABCs of z/OS System Programming Volume 8

2.10 Logrec data set

Figure 2-12 SYS1.LOGREC data sets

Logrec data set
The z/OS error log contains data related to hardware and software errors. This data is written
to the SYS1.LOGREC data set and is also written to internal storage that is included in a
dump. The SYS1.LOGREC data set can be interrogated using the ICFEREP1 program, or if
the abend has triggered a dump, the EREP data can be reviewed using the IPCS VERBX
LOGDATA command.

Figure 2-13 on page 44 shows the last error record contained in the error log generated when
the VERBX LOGDATA command was issued for a dump being reviewed using IPCS.
Generally, the error log entries at the end of the display, if they have an influence on the
problem being reviewed, will have time stamps that relate to (or immediately precede) the
actual abend.

SYS1.LOGRECSYS1.LOGREC SYS1.LOGRECSYS1.LOGREC SYS1.LOGRECSYS1.LOGREC

LPAR 1 LPAR 2 LPAR 3
Sysplex
Chapter 2. Problem resolution steps 43

Figure 2-13 Final record in logrec data from IPCS VERBX LOGDATA

JOBNAME: ITSOCI0I SYSTEM NAME: SC48
ERRORID: SEQ=05462 CPU=0042 ASID=00CE TIME=15:03:28.1

SEARCH ARGUMENT ABSTRACT

 PIDS/5740XYR00 RIDS/DSNXGRDS#L RIDS/DSNXRIVB AB/S00C7 PRCS/00000000
REGS/0CB2C
 REGS/B6B67 RIDS/DSNTFRCV#R

 SYMPTOM DESCRIPTION
 ------- -----------
 PIDS/5740XYR00 PROGRAM ID: 5740XYR00
 RIDS/DSNXGRDS#L LOAD MODULE NAME: DSNXGRDS
 RIDS/DSNXRIVB CSECT NAME: DSNXRIVB
 AB/S00C7 SYSTEM ABEND CODE: 00C7
 PRCS/00000000 ABEND REASON CODE: 00000000
 REGS/0CB2C REGISTER/PSW DIFFERENCE FOR R0C: B2C
 REGS/B6B67 REGISTER/PSW DIFFERENCE FOR R0B:-6B67
 RIDS/DSNTFRCV#R RECOVERY ROUTINE CSECT NAME: DSNTFRCV

OTHER SERVICEABILITY INFORMATION

 DATE ASSEMBLED: 01/29/04
 MODULE LEVEL: UQ84577
 SUBFUNCTION: RDS SQL DIAGNOSE

 SERVICEABILITY INFORMATION NOT PROVIDED BY THE RECOVERY ROUTINE

 RECOVERY ROUTINE LABEL

 TIME OF ERROR INFORMATION

 PSW: 077C1000 9E43EDFC INSTRUCTION LENGTH: 04 INTERRUPT CODE: 0007
 FAILING INSTRUCTION TEXT: D5244420 B0219680 D5245820

Note: Do not ignore the valuable data that is written to the log files.
44 ABCs of z/OS System Programming Volume 8

2.11 Analyzing EREP reports

Figure 2-14 Gather messages and logrec

Environmental Record Editing and Printing Program (EREP)
The Environmental Record Editing and Printing Program (EREP) is a diagnostic application
program that runs under the MVS, VM, and VSE operating systems.The purpose of EREP is
to help IBM service representatives maintain your data processing installation. EREP edits
and prints reports from the records placed in the error recording data set (ERDS) by the error
recovery program (ERP) of your operating system. Some of these records are the result of
device or system errors, while others are informational or statistical data. The service
representative analyzes information in the EREP reports to determine whether a problem
exists, what the problem is, and where the problem is located.

What EREP does
EREP processes the error records from your operating system to produce formatted reports.
These EREP reports can show the status of the entire installation, an I/O subsystem, or an
individual device, depending upon which report you request.

Important: EREP is a service tool that shows statistical data that helps your IBM service
representative determine whether a problem is media related or hardware related.

1. EREP edits and prints records that already exist; it does not create the error records.

2. EREP is not designed to automate media maintenance or library management.

SYSLOGSYSLOG

OPERLOGOPERLOG

SYS1.LOGRECSYS1.LOGREC

EREP

EXEC PGM=IFCEREP1

FTP

IBM
Chapter 2. Problem resolution steps 45

2.12 Using EREP

Figure 2-15 Establishing an EREP environment

EREP report types
EREP reports vary in format depending on types shown in Table 2-1.

Table 2-1 EREP report types

Report Type Format

System summary Error data in summary form

Trends Error data by daily totals

Event history Error data in a time sequence by occurrence

System exception The system exception series is a series of reports that list software
and hardware error data in a variety of ways to help you identify
problems within your subsystems.

Threshold summary The threshold summary report shows all the permanent read/write
errors, temporary read/write errors, and media statistics for each
volume mounted.

Detail edit and summary The detail edit and summary reports provide environmental
information, hexadecimal dumps and summaries of errors to
determine their nature and causes.

EREP report types

System summary

Trends

Event history

System exception

Threshold summary

Detail edit and summary

EREP records

Software and hardware

Stages for building EREP records

Setting EREP environment
46 ABCs of z/OS System Programming Volume 8

EREP records
Your operating system with its hardware and software captures statistical and error data,
such as:

� A read error on a direct access device or tape volume
� A machine check on a processor
� An IPL of the operating system

Processing EREP data records
The system procedure executing EREP issues commands to write the buffered statistical
data from the system-attached devices to the ERDS (error recording data set). The system
ERP (error recovery program/processing) builds the records in the stages shown in Table 2-2.

Table 2-2 EREP processing stages

Setting up and running EREP
See Environmental Record Editing and Printing Program (EREP) User’s Guide, GC35-0151
for the general guidelines for invoking and running EREP.

Stage Action

1 The devices attached to the operating system generate sense data for the events
encountered during the day. The sense data can be informational, error-related, or
statistical.

2 The ERP of the operating system looks at the sense data. If the sense data indicates
that a record should be built, the ERP takes the sense data and places it after the
standard header information. The combination of the header information and the sense
data becomes the error record.

3 The operating system ERP writes the records onto the system ERDS.
Chapter 2. Problem resolution steps 47

2.13 EREP reports

Figure 2-16 Generating EREP reports

EREP reports
EREP reports are designed to give you a variety of views of the data being processed. EREP
produces:

Overview reports From which you can determine if there are problems

Analysis reports From which you can determine where there are problems

Detail reports From which you can determine what the problems are

Generating an EREP report
MVS systems require system controls that create the interface between EREP and the
operating system. The following is an example of job control language (JCL) to execute a
series of EREP reports as it would appear in a file without the annotation of the more detailed
example provided in Environmental Record Editing and Printing Program (EREP) User’s
Guide, GC35-0151.

You run EREP by executing a procedure containing the operating system EREP command
and its associated parameter and control statements. You can only request one type of report
each time you execute the EREP command for your system. You may produce any number
of different type reports by issuing additional EREP commands with the associated
parameters and control statements.

Generating EREP reports

Overview reports

Analysis reports

Detail reports
//EREPPRNT JOB ,ESTER,
// MSGCLASS=T,NOTIFY=C961231,USER=C961231
//\--\/
//\ STEP0: COPIES SYS1.LOGREC TO TEMPORARY DATA SET \/
//\--\/
//S0 EXEC PGM=IFCEREP1,REGION=1024K,
// PARM='ACC,ZERO=N'
//SERLOG DD DISP=(OLD,KEEP),DSN=SYS1.LOGREC
//ACCDEV DD DISP=(NEW,PASS),DSN=&&ERRDATA,
// UNIT=SYSDA,SPACE=(CYL,(2,2)),
// DCB=(RECFM=VB,BLKSIZE=6144)
//DIRECTWK DD DISP=(NEW,DELETE),UNIT=SYSDA,SPACE=(CYL,2,,CONTIG)
//EREPPT DD SYSOUT=A,DCB=BLKSIZE=133
//TOURIST DD SYSOUT=A,DCB=BLKSIZE=133
//SYSIN DD DUMMY
48 ABCs of z/OS System Programming Volume 8

Create MVS JCL
Define the input and output data sets using JCL DD statements. The JCL submits the job as a
batch job or interactively via TSO. Put the IFCEREP1 program in the JCL EXEC statement.
Include the EREP parameters on the EXEC statement or as part of SYSIN in-stream data
with the EREP control statements, as shown in Figure 2-17.

Figure 2-17 EREP save and report JCL example

//EREPPRNT JOB ,ESTER,
// MSGCLASS=T,NOTIFY=C961231,USER=C961231
//\--\/
//\ STEP0: COPIES SYS1.LOGREC TO TEMPORARY DATA SET \/
//\--\/
//S0 EXEC PGM=IFCEREP1,REGION=1024K,
// PARM='ACC,ZERO=N'
//SERLOG DD DISP=(OLD,KEEP),DSN=SYS1.LOGREC
//ACCDEV DD DISP=(NEW,PASS),DSN=&&ERRDATA,
// UNIT=SYSDA,SPACE=(CYL,(2,2)),
// DCB=(RECFM=VB,BLKSIZE=6144)
//DIRECTWK DD DISP=(NEW,DELETE),UNIT=SYSDA,SPACE=(CYL,2,,CONTIG)
//EREPPT DD SYSOUT=A,DCB=BLKSIZE=133
//TOURIST DD SYSOUT=A,DCB=BLKSIZE=133
//SYSIN DD DUMMY
//\
//\--\/
//\ STEP1: PRINTS SYSTEM SUMMARY REPORT \/
//\--\/
//S1 EXEC PGM=IFCEREP1,REGION=1024K,
// PARM='HIST,ACC=N,SYSUM'
//ACCIN DD DISP=(OLD,PASS),DSN=&&ERRDATA
//DIRECTWK DD DISP=(NEW,DELETE),UNIT=SYSDA,SPACE=(CYL,2,,CONTIG)
//EREPPT DD SYSOUT=A,DCB=BLKSIZE=133
//TOURIST DD SYSOUT=A,DCB=BLKSIZE=133
//SYSIN DD DUMMY
//\
//\--\/
//\ STEP2: PRINTS SYSTEM EXCEPTION REPORTS \/
//\--\/
//S2 EXEC PGM=IFCEREP1,REGION=1024K,
// PARM='HIST,ACC=N,SYSEXN,TABSIZE=128K'
//ACCIN DD DISP=(OLD,PASS),DSN=&&ERRDATA
//DIRECTWK DD DISP=(NEW,DELETE),UNIT=SYSDA,SPACE=(CYL,2,,CONTIG)
//EREPPT DD SYSOUT=A,DCB=BLKSIZE=133
//TOURIST DD SYSOUT=A,DCB=BLKSIZE=133
//SYSIN DD DUMMY
//\
//\--
Chapter 2. Problem resolution steps 49

2.14 EREP parameter and control statements

Figure 2-18 Parameter and control statements for EREP reports

Using parameter and control statements
The parameters and control statements can be grouped according to the kinds of information
they convey to the EREP program as shown in Figure 2-19 on page 51 and Figure 2-20 on
page 51.

These parameter and control statements determine the following:

� Which report to produce

� Which records to select for the requested report

� How to control the processing of error records and report output

� How to direct EREP processing and supply more information about the system's
configuration

This provides organization to the requested reports.

Using PARM=CARD
In the JCL, specify PARM='CARD' and enter the parameters and control statements on the
SYSIN statement, as follows:

//STEP1 EXEC PGM=IFCEREP1,PARM='CARD'

When submitting JCL for EREP reports, use:
EREP report parameters
EREP selection parameters
EREP processing parameters
EREP control statements
EREP parameter combinations

Example of parameter and control statements

HIST=Y
ACC=N
PRINT=PS
TABSIZE=800K
ZERO=NO
ENDPARM
/*

//STEP1 EXEC PGM=IFCEREP1,PARM='CARD'

50 ABCs of z/OS System Programming Volume 8

EREP summary report
The system summary report, using the SYSUM parameter, provides an overview of errors for
each of your installation's principal parts, or subsystems. SYSUM produces a condensed
two-part system summary report of all errors for the principal system elements, such as CPU,
channels, storage, SCP, and the I/O subsystem.

Figure 2-19 EREP summary report

EREP SYSEXN report
The SYSEXN parameter produces a system exception report series covering processors,
channels, DASD, optical, and tape subsystems.

Figure 2-20 EREP exception report

//HILG1A JOB (7904),MSGLEVEL=(1,1),MSGCLASS=K,REGION=6000K,
// NOTIFY=HILG,CLASS=A
//STEP1 EXEC PGM=IFCEREP1,PARM='CARD'
//SERLOG DD DSN=SYS1.LOGREC,DISP=SHR
//ACCIN DD DSN=VSA1.EREP.RECCRW,DISP=SHR
//DIRECTWK DD UNIT=SYSDA,SPACE=(CYL,5,,CONTIG)
//EREPPT DD SYSOUT=*
//TOURIST DD SYSOUT=*
//SYSIN DD *
HIST=Y
ACC=N
SYSUM
TABSIZE=800K
ZERO=NO
ENDPARM
/*

//HILG1A JOB (7904),MSGLEVEL=(1,1),MSGCLASS=K,REGION=6000K,
// NOTIFY=HILG,CLASS=A
//STEP1 EXEC PGM=IFCEREP1,PARM='CARD'
//SERLOG DD DSN=SYS1.LOGREC,DISP=SHR
//ACCIN DD DSN=VSA1.EREP.RECCRW,DISP=SHR
//DIRECTWK DD UNIT=SYSDA,SPACE=(CYL,5,,CONTIG)
//EREPPT DD SYSOUT=*
//TOURIST DD SYSOUT=*
//SYSIN DD *
HIST=Y
ACC=N
SYSEXN
TABSIZE=800K
ZERO=NO
ENDPARM
/*
Chapter 2. Problem resolution steps 51

2.15 Copy logs to tape

Figure 2-21 JCL to create SYSLOG on tape

SYSLOG to support center
Sometimes it might be necessary to copy log data sets to a tape and send them to IBM or any
other support center. The following JCL can be used to label the tape and copy data:

To send data to IBM you don’t need the data on a tape. You can send the data using FTP to
a server. Ask your support center for the address.

Send SYSLOG data set to IBM support center

//HILG1A JOB (7904),MSGLEVEL=(1,1),MSGCLASS=K,REGION=6000K,
// NOTIFY=HILG,CLASS=A
//STEP1 EXEC PGM=IEHINITT
//LABEL1 DD UNIT=(3480,1,DEFER),VOL=(,RETAIN),STORCLAS=NONSMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
LABEL1 INITT SER=SHARK,DISP=REWIND
//GENER1 EXEC PGM=IEBGENER
//SYSIN DD DUMMY
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DSN=SYS1.LOG.DATA,DISP=SHR
//SYSUT2 DD DSN=HILG.LOG.DATA,DISP=(,KEEP),
// DCB=*.SYSUT1,
// UNIT=3480,LABEL=(1,SL),VOL=(,RETAIN,SER=SHARK),
// STORCLAS=NONSMS
52 ABCs of z/OS System Programming Volume 8

2.16 Implement a resolution

Figure 2-22 Implement a resolution

Implement the resolution
Successful diagnosis of the problem will result in a number of possible resolutions:

� User Error

This will require you to correct your procedure to ensure a satisfactory resolution is
implemented. If your procedure is impacting other users, then prompt action is
encouraged.

� Software implementation error

You must ensure that all installation procedures have been correctly executed and any
required customization has been performed correctly. Until you can be sure of a
successful implementation, it is advisable to remove this software, or regress to a previous
level of the software until more extensive testing can be done in an environment that will
not impact production workloads.

� Software product fault

If the fault is identified as a failure in software a fix might already have been developed to
solve this problem. This fix is identified as a Program Temporary Fix (PTF) and will need
to be installed into your system. If the problem is causing a major impact, it is suggested
that you expedite your normal migration process and promote the fix to the problem
system to hopefully stabilize that environment.

If the problem has not been previously reported, an authorized program analysis report
(APAR) will be created and a PTF will be generated.

SMP/E
 PTF

ApplicationApplication
User ModuleUser Module

ExitExit

SMP.GLOBAL.CSISMP.GLOBAL.CSI
Chapter 2. Problem resolution steps 53

� Hardware fault

This is the resolution that will be controlled by the hardware service representative, but
may require some reconfiguration tasks, depending on the nature of the problem.
Consultation with the hardware vendor's service representative will clarify the
requirements.

Close the problem
When you have tested and implemented the problem resolution, ensure that all parties
involved with this problem are informed of the closure of this issue.

It should be noted that during your career you will experience some problems that occur only
once, and even with the best diagnostic data, cannot be recreated or solved, by anyone.
When this happens there is a point in time where you must accept the fact that this anomaly
was in fact just that, an anomaly.
54 ABCs of z/OS System Programming Volume 8

Chapter 3. Common problem types

z/OS can process large amounts of work efficiently because it keeps track of storage in a way
that makes its storage capacity seem greater than it is. It’s a complex system made up of
many components, similar to the human body. And, like the human body, z/OS can
experience problems that need to be diagnosed and corrected.

The following are examples of problems you might encounter while running z/OS:

� An abnormal end occurs in processing, known as an abend.

– Application program abends

– System program abends

� A job remains hung in the system.

– System, subsystem and application hang.

� The system or process repetitively loops through a series of instructions.

– System, subsystem and application loop

� I/O errors.

� System wait states.

� Processing slows down.

For system problems, z/OS displays symptoms that will help you with your diagnosis.
Problem source identification, called PSI, is the determination of what caused the error. Why
was an abend issued? What program is using so much of system storage? What component
caused the hang? Which program is looping?

3

© Copyright IBM Corp. 2007. All rights reserved. 55

3.1 Common problem types

Figure 3-1 Common problem types

Application program abends
Application program abends are always accompanied by messages in the system log
(SYSLOG) and the job log indicating the abend code and usually a reason code. Many
abends also generate a symptom dump in the SYSLOG and job log. A symptom dump is a
system message, either message IEA995I or a numberless message, which provides some
basic diagnostic information for diagnosing an abend. Often the symptom dump information
can provide enough information to diagnose a problem.

For a system-detected problem, the system abnormally ends a task or address space when it
determines that the task or address space cannot continue processing and produce valid
results.

System program abends
Like application program abends, system program abends are usually accompanied by
messages in the system log (SYSLOG), and if there is a SYS1.DUMPxx data set available or
dynamic dump data set allocation at the time of the abend, and this dump code was not
suppressed by the dump analysis and elimination (DAE) facility, then an SVC dump will be
taken. SVC dumps will be discussed later in this chapter.

I/O errors
I/O errors are most likely caused by a hardware failure or malfunction. The visible symptom
will be an abend, accompanied by messages in the SYSLOG that include reason codes,

Hardware

System wait states Application program abends

System, subsystem
and application hangs

System, subsystem
and application loops

System program abends I/O errors
56 ABCs of z/OS System Programming Volume 8

which can identify the type of error, and sense data, which will offer more detailed,
hardware-specific information.

I/O errors can also be the result of software conditions that create a situation where
subsequent operations will appear as I/O errors. This could be the result of a corruption in a
data set, or data set directory, and the rectification process may be as simple as redefining
the data set.

System wait states
The basic summation of a wait state is: the "machine is dead and will not IPL". You will
usually experience this condition during the IPL process, and the disabled wait state code will
indicate the problem. The cause is often as simple as the system not being able to find some
data that is crucial to the IPL process on the IPL volume. Wait codes are documented in z/OS
MVS System Codes, SA22-7626.

The types of waits are:

� Disabled wait with a wait state code - The system issues a wait state code and stops. The
operator can see the wait state code on the system console. This wait is called a coded
wait state or a disabled wait. There are two types of disabled wait state codes, restartable
and non-restartable.

For a non-restartable wait state code, the operator must reIPL the system. For a
restartable wait state code, the operator may restart the system.

� Enabled wait - The system stops processing without issuing a wait state code when the
dispatcher did not find any work to be dispatched.

The operator sees a WAIT indicator on the system console, followed by a burst of activity
caused by system resources manager (SRM) processing, followed by the WAIT indicator,
followed by a burst of activity, and so on. An indication of an enabled wait is a PSW of
X'07xxxxxx xxxxxxxx'.

A special type of enabled wait is called a no work wait or a dummy wait.

System hangs and loops
The operator usually takes a stand-alone dump for one of the following types of problems:

� Disabled wait

� Enabled wait

� Loop

� Partial system hang
Chapter 3. Common problem types 57

3.2 Stand-alone dumps

Figure 3-2 Conditions for taking stand-alone dumps

Stand-alone dumps
When an operator takes a stand-alone dump, it is important to determine the conditions of the
system at the time the dump was taken. Because a stand-alone dump can be requested for
various problem types, the collection of problem data is imperative for determining the cause
of the error.

The objectives for analyzing the output of a stand-alone dump are:

� Gather symptom data

� Determine the state of the system

� Analyze preceding system activity

� Find the failing module and component

Determine symptoms
Operational conditions should be determined to understand the exact circumstances that
caused the dump to be taken, as follows:

� Was the system put into a wait state?

� Were the consoles hung or locked up?

� Were commands being accepted on the master console without a reply?

� Was a critical job or address space hung?

For certain problem types:

The stand-alone dump program produces a
stand-alone dump of storage

Use for:

A system that fails

The system stops processing

The system enters a wait state with or without a wait
state code

The system enters an instruction loop or hangs

The system is processing slowly
58 ABCs of z/OS System Programming Volume 8

3.3 Symptom dump output

Figure 3-3 SYMPTOM dump data as shown in the MVS SYSLOG and related job log

Symptom dumps
A symptom dump is a system message, either message IEA995I or a numberless message,
that provides some basic diagnostic information for diagnosing an abend. Often the symptom
dump information can provide enough data to diagnose a problem.

Symptom dumps appear in the following places:

� For SYSUDUMP and SYSABEND ABEND dumps: in message IEA995I, which is routed
to the job log.

� For a SYSMDUMP ABEND dump: in message IEA995I in the job log and in the dump
header record.

� For an SVC dump: in the dump header record.

� For any dump in a Time Sharing Option/Extensions (TSO/E) environment: displayed on
the terminal when requested by the TSO/E PROFILE command with the WTPMSG option.

� In response to a DISPLAY DUMP,ERRDATA operator command, which displays
information from SYS1.DUMPxx data sets on direct access.

Symptom dump output
Figure 3-3 shows the symptom dump for an abend X' 0C4' with reason code X'4'. This
symptom dump shows that:

� Active load module ABENDER is located at address X'00006FD8'.

IEA995I SYMPTOM DUMP OUTPUT
 SYSTEM COMPLETION CODE=0C4 REASON CODE=00000004
 TIME=16.44.42 SEQ=00057 CPU=0000 ASID=000C
 PSW AT TIME OF ERROR 078D0000 00006FEA ILC 4 INTC 04
 ACTIVE LOAD MODULE=ABENDER ADDRESS=00006FD8
OFFSET=00000012
 DATA AT PSW 00006FE4 - 00105020 30381FFF 58E0D00C
 GPR 0-3 FD000008 00005FF8 00000014 00FD6A40
 GPR 4-7 00AEC980 00AFF030 00AC4FF8 FD000000
 GPR 8-11 00AFF1B0 80AD2050 00000000 00AFF030
 GPR 12-15 40006FDE 00005FB0 80FD6A90 00006FD8
 END OF SYMPTOM DUMP

For system and application program abends

Normally a symptom dump is displayed
Chapter 3. Common problem types 59

� The failing instruction was at offset X'12' in load module ABENDER.

� The address space identifier (ASID) for the failing task was X' 000C'.

If the information in a symptom dump is insufficient, you can capture additional dump data by
including specific DD statements, as discussed in the following section.

Note: Abend codes starting with U are user abends, and are not issued by z/OS. Any
program can issue a user abend. Its meaning is determined by the program. Language
Environment (LE) shows these kinds of abends according to the LE option settings
because z/OS will not handle them.
60 ABCs of z/OS System Programming Volume 8

3.4 Waits, hangs, and loops

Figure 3-4 Wait scenarios

System, subsystem, and application hangs
"Hangs" are usually caused by a task, or tasks, waiting for an event that will either never
happen, or an event that is taking an excessive amount of time to occur. If one of the waiting
tasks is a fundamental system task, or is holding control of a resource, for example a data
set, then other tasks will queue up and wait for the required resource to become available. As
more tasks enter the system they will also join the queue until the system eventually stops, or
the task causing the contention is cancelled. Unfortunately, by the time the system grinds to a
halt, the operating system will no longer process any operator commands, so an IPL will be
the only alternative. A system hang is more specifically known as an enabled wait state.

Hangs and loops
One of the difficult things to determine is whether a system or subsystem is in a hung or
looping state. While the symptoms in many cases are similar, for example, the inability to
process other units of work, or transactions; or the inability to get the system or subsystem to
accept commands—the key difference is whether there is CPU and EXCP activity that
indicates the system is still performing work.

If no other tasks can be dispatched within a subsystem, and the CPU activity is high, often
100%, this is generally a symptom that you have a loop condition. Loops can usually be
categorized as either enabled, disabled or a spin loops.

Loops are caused by a program, application, or subsystem attempting to execute the same
instructions over and over again. The most severe loop condition causes the task

Resource owner
Waiting for resource

System waits, hang conditions, and program loops
Chapter 3. Common problem types 61

experiencing the condition to use all available CPU resources, and subsequently no other
task is allowed to gain control. The only way to alleviate the problem is to cancel the problem
task, or if this is unsuccessful, an IPL is necessary. The three types of loop conditions are:

Enabled Enabled loops are usually caused by a programming error, but do not impact
other jobs in the system, unless the looping task is a subsystem, which will
generally impact the whole system.

Disabled Disabled loops will not allow an interrupt to be processed, and are generally
identified by continuous 100 percent CPU utilization.

Spin Spin loops occur when one processor in a multiple-processor environment is
unable to communicate with another processor, or is unable to access a resource
being held by another processor.

A CPU entering a disabled loop will often be presented to the operators as a spin loop, where
the system will cycle (or spin) through the available CPUs.

There are many tools that can be used to assist with hang or loop problem diagnosis, and
many of the system monitoring tools will enable you to interrogate at the transaction or thread
level and to cancel or purge the individual unit of work or task associated with the loop.

It is important to remember that the monitoring tools should have a high dispatching priority to
enable them to get control when required.

It is good to remember that trace data can be used to assist with loop and hang diagnosis,
and even 20 seconds of trace data can help identify a looping sequence and often the
associated unit of work or transaction. For example, the CICS Auxtrace facility or CICS
internal tracing with all CICS components traced at level 1 and a dump of the suspected
problem regions can show via a quick IPCS review the type of problem you are experiencing.

An indication of a dummy wait or no work wait is a PSW of X'070E0000 00000000' and GPRs
containing all zeroes. Diagnosis is required for this type of wait only when the system does
not resume processing.

Processing slows down
In case of system processing slows—central processor at 100% utilization or a job using a
high percentage of central processor storage—use an online monitor such as RMF to
determine where the problem originates.
62 ABCs of z/OS System Programming Volume 8

3.5 SLIP command

Figure 3-5 Using SLIP commands

Types of SLIP commands
The SLIP command controls SLIP (serviceability level indication processing). It is a
diagnostic aid that intercepts or traps certain system events and specifies what action to take.
Using the SLIP command, you can set, modify, and delete SLIP traps. You must specify SET,
MOD, or DEL immediately following SLIP, as shown in Figure 3-5.

SLIP command examples
SLIP SET[,options],END - Command for an error event trap (non-PER)
SLIP SET,IF[,options],END - Command for an instruction fetch PER trap
SLIP SET,SBT[,options],END - Command for a successful branch PER trap
SLIP SET,SA|SAS[,options],END - Commands for a storage alteration PER trap
SLIP MOD[,options] - Command to modify an existing trap
SLIP DEL[,options] - Command to delete an existing trap

Using SLIP commands
Use a SLIP command only at the direction of the system programmer. You can enter a SLIP
command as follows:

� On a console with MVS master authority

Note: If you specify IF, SBT, SA, or SAS, they must immediately follow SET. Specify
END at the end of all SLIP SET commands.

Types of SLIP commands

SLIP SET - "Setting a SLIP Trap"

SLIP MOD - "Modifying an Existing SLIP Trap"

SLIP DEL - "Deleting an Existing SLIP Trap"

Using SLIP commands

On a console with MVS master authority

On a TSO terminal in OPERATOR mode

In a TSO CLIST

In an IEACMD00, COMMNDxx, or IEASLPxx
parmlib member
Chapter 3. Common problem types 63

� On a TSO terminal in OPERATOR mode

� In a TSO CLIST

In the CLIST, use the line continuation character at the end of each line and the END
parameter at the end of the last line.

� In an IEACMD00, COMMNDxx, or IEASLPxx parmlib member

While you can enter a SLIP command in any of these members, IBM recommends that
you place your SLIP commands in IEASLPxx and enter a SET SLIP=xx command to
activate the member. IEACMD00 and COMMNDxx require that a command be on a single
line. Also, SLIP may process commands in IEACMD00 and COMMNDxx in any order, but
processes commands in IEASLPxx in the order in which they appear.

For a sysplex containing similar systems, certain problems might require identical SLIP traps
on those similar systems. To set up these traps, do the following:

� Assign similar names to identical jobs on different systems. The names should form a
pattern, such as JOB1, JOB2, JOB3, and so on.

� Create one IEASLPxx member containing the trap you need for the problem.

� Place the member in the shared parmlib data set or in the parmlib data set for each of the
similar systems.

� In systems using JES2 or JES3, activate the member or members with the following
command entered on one of the systems:

ROUTE *ALL,SET SLIP=xx
64 ABCs of z/OS System Programming Volume 8

3.6 Storage overlays

Figure 3-6 Problems with storage overlays

Storage overlays
Storage overlays can affect your system during IPL and during production lifetime. The
system can crash if any of the system-related control blocks have been overlaid. Data overlay
may be recoverable but you still need to determine why you get the overlay and who is storing
data to an area not owned or where data has already been located.

If the data that causes the overlay is still stored at the same storage address, you can use a
storage alteration SLIP (SA) to locate the culprit. If the data is stored randomly in a storage
area, it’s quite difficult to find the responsible module or program.

System problems
Always be aware of the possibility of a storage overlay when analyzing a dump. System
problems in MVS are often caused by storage overlays that destroy data, control blocks, or
executable code. The results of such an overlay vary. For example:

� The system detects an error and issues an abend code, yet the error can be isolated to an
address space. Isolating the error is important in discovering whether the overlay is in
global or local storage.

� Referencing the data or instructions can cause an immediate error such as a specification
exception (abend X'0C4') or operation code exception (abend X'0C1').

� The bad data is used to reference a second location, which then causes another error.

System problems in MVS are often caused by
storage overlays that:

Destroy data, control blocks, or executable code

Overlays result in:

MVS detects an error and issues an abend code

Referencing the data or instructions can cause an
immediate error

Bad data is used to reference a second location,
which then causes another error
Chapter 3. Common problem types 65

3.7 Storage overlay during IPL

Figure 3-7 Analyzing storage overlays

Storage overlays during IPL
When you recognize that the contents of a storage location are not valid and subsequently
recognize the bit pattern as a certain control block or piece of data, you can generally identify
the erroneous process or component and start a detailed analysis.

WAIT 014
A WAIT 014 is usually the result of an overlay of a critical control block such as the PSA,
ASCB, SGTE, or PGTE. Typically the last program running on the CP caused the overlay of
the PSA or related control blocks. The system enters a non-restartable wait state.

Dump to analyze overlay
To determine the control block that has been overlaid and the module that did the overlay ask
the system programmer to provide a standalone dump. Use IPCS to format the dump and
start with the debug.

Identify the failing processor
Enter IP ST WORKSHEET and examine the common system data area (CSD) CPU online mask.
There is one bit for each processor online. To determine which processor was taken offline
look at:

CSD Available CPU mask: FC00 Alive CPU mask: 7C00 No. of active CPUs: 0005

Storage overlay of PSA or related control blocks

Take a stand-alone dump

Use IPCS to format the dump

Analysis of dump

Identify failing CP

Identify failing module

Create a trap to find the overlay

Diagnose the cause
66 ABCs of z/OS System Programming Volume 8

Where:

FC00 shows the available CPU mask. Bits 0 to 5 are set to one.
7C00 shows the alive CPU mask. Bits 1 to 5 are set to one

This means that CPUs 1 to 5 are active and CPU 0 is the failing processor.

In addition, the IPCS command ST WORKSHEET also shows the automatic CPU recovery
(ACR) pair leading to failing and recovery processors.

Identify the failing module and overlaid control block
Examine the last program interrupt on the failing processor:

Program old PSW at PSA+x’28’ identifies the failing module
ILIC (Instruction Length Interrupt Counter) is at PSA+x’8C’

Use the PSW address and the ILC to determine the offset in the failing module. Examine that
code to obtain the control block field that was being referenced. This is typically a PSA field. If
possible, use known/valid control block values to determine the extent of the overlay. For
detailed control block information see the volumes on z/OS MVS Data Areas, as follows:

� z/OS MVS Data Areas, Volume 1 (ABEP - DALT), GA22-7581

� z/OS MVS Data Areas, Volume 2 (DCCB - ITZYRETC), GA22-7582

� z/OS MVS Data Areas, Volume 3 (IVT - RCWK), GA22-7583

� z/OS MVS Data Areas, Volume 4 (RD - SRRA), GA22-7584

� z/OS MVS Data Areas, Volume 5 (SSAG - XTLST), GA22-7585

Provide a trap to catch the overlayer
A storage alteration (SA) trap could be supplied to catch the overlayer.

Create a SLIP trap to wait when the PSA+x’200’ is overlaid, as follows:

SLIP SET,SA,ASA=SA,A=WAIT,RA=(200,203),END

ASA=SA prevents the trap from hitting on a data space update.

Diagnosing the cause
From the SA dump of the WAIT 014, determine the Window of Error by:

� Examining the system trace to identify the last program that successfully ran on the failing
CP.

� Identify the failing instruction address via LCCAPPSW, LCCA+x’88’.

These two events define the Window of Error, and the code that executed in the Window
probably caused the error.

Note: The trap should only be set on a field that is not ordinarily updated.
Chapter 3. Common problem types 67

3.8 Storage overlay in a production system

Figure 3-8 Setting a SLIP trap for an overlay

Storage overlay SLIP trap
Depending on the overlaid area, it could be possible to repair the overlaid control block or
storage information. To fix the overlay you need to know the storage address and the data
that has been overlaid. The SLIP definition provides the possibility to check the control block
using the indirect pointing.

Use a powerful option where SLIP will modify the storage or register as part of the action
taken when the PER trap hits.

Use with caution and ensure accuracy. This will allow correction of an overlay or improperly
specified register or storage, but if the target is not correct, or the refresh data is incorrect,
further potential damage may occur.

The following SLIP shows an example of how to get a dump and repair the overlaid area. The
SLIP indicates the module name is located in ASID X’9C’ at offset x’5000’, and refreshes the
first two bytes to zeroes and sets R1=0.

SLIP SET,IF,N=(IAXUA,237A),A=(SVCD,REFAFTER),SUMLIST=(009C.5000,6000),
REFAFTER=(009C.5000.EQC(2),009C.5098,1REQ,00000000),END

Determine overlay area

Find storage address

Determine data overlayed

Set a SLIP trap

Determine if storage or a register is needed

Sample SLIP trap

SLIP SET,IF,N=(IAXUA,237A),A=(SVCD,REFAFTER),SUMLIST=(009C.5000,6000),
REFAFTER=(009C.5000.EQC(2),009C.5098,1REQ,00000000),END
68 ABCs of z/OS System Programming Volume 8

3.9 SLIP to catch the overlayer

Figure 3-9 Setting SLIP traps

Sample SLIP trap
The following SLIP is an example how to catch the program overlaying the storage area on
offset x’2D0’ length 4 bytes.

SLIP SET,SA,ASA=SA,RA=(2D0,2D3),A=SVCD,ID=HILG,
SDATA=(ALLNUC,PSA,SQA,CSA,RGN,LPA,TRT,SUM),END

Determining if SLIP matches
Check the following to see whether the SLIP is not matching:

� Issue a D SLIP=XXXX (where XXXX is the trap id) to verify that the trap was set as
intended.

� With the LPAMOD or PVTMOD keywords, verify that it specifies the load module name,
not the CSECT name.

� Be sure that MODE=HOME,JOBNAME= or ASID is specified with PVTMOD for a module
that is loaded into private storage.

� PER traps:

– Check the PSA+X'98' for the residual PER address stored by the hardware when the
PER interrupt is presented. The PER trap is not active if 0 or the PER bit is not on in
the PSW.

– Check control registers 9, 10, and 11 to determine whether they are set correctly.
These registers are the STATUS REGS, as follows:

Determine how to set the SLIP

Check if SLIP does not match

PER traps

DEBUG option

Environments where SLIP PER not supported

SLIP SET,SA,ASA=SA,RA=(2D0,2D3),A=SVCD,ID=HILG,
SDATA=(ALLNUC,PSA,SQA,CSA,RGN,LPA,TRT,SUM),END
Chapter 3. Common problem types 69

• CR 9 - PER EVENT TYPE
• CR 10 - BEGIN RANGE
• CR 11 - END RANGE

� Use the DEBUG option with A=TRACE to see which keyword is not matching on the SLIP
trap. With DEBUG a GTF record will be cut regardless of whether the trap matches, and
will contain a key indicating which keyword did not match.

For a SLIP SET trap, the DEBUG option allows you to determine why a trap is not working
as you expected by indicating which of the conditions you established is not being met.
DEBUG provides trap information each time the trap is tested rather than just when it
matches.

The generalized trace facility (GTF) and its trace option for SLIP records must be active.
Each DEBUG trace record contains SLIP information plus two bytes: the first byte
contains a value indicating the failing parameter and the second byte contains zero.

� With PVTMOD, A=IGNORE, traps will not match if the local lock is not available at the
time the PER interrupt is presented and SLIP module IEAVTSL2 is checking for a match.
See DOC APAR OY37341.

SLIP has a default match limit of 1 on all traps that specify, or default to, ACTION=SVCD.
The match limit can be changed by the MATCHLIM parameter when setting the SLIP trap.
You can further qualify the SLIP trap by using other parameters, such as DATA and
PVTMOD.

SLIP PER environment
SLIP PER is not active or is not supported in the following environments:

� Program check, machine check, and restart FLIHs

� Some RSM™ modules

� Dispatcher

� Lock manager (cannot SLIP on lock words)

� DAT-OFF code (SLIP only supports virtual addresses)

� Any code that turns the PER bit off in the PSW

If any of the above cases apply, use the CP address compare hardware function or a
software detection trap.

Note: Any SLIP trap affects system performance, but PER traps can have a
measurable effect on performance. Therefore, use conditions to filter the events being
checked for matches, especially for PER traps. Improper use of PER traps can cause
severe performance problems.
70 ABCs of z/OS System Programming Volume 8

Chapter 4. Dump processing

Dumps can provide useful diagnosis data. But you need to check the dump-related options to
be sure all information needed will be dumped.

Generally, the system automatically captures a dump when it detects a serious error with an
operating system component (for example, JES, VTAM, etc.), a subsystem (for example,
CICS, DB2, MQ, etc.), or application program. For most system or subsystem failures an SVC
(Supervisor Call) dump is generated and written out to a predefined, or dynamically defined,
dump data set. You do, however, have the ability to manually capture a dump should you need
to capture specific diagnostic data.

The DUMP command requests a system dump (SVC dump) of virtual storage. The data set
may be either a pre-allocated dump data set named SYS1.DUMPxx, or an automatically
allocated dump data set named according to an installation-specified pattern. You should
request only one dump at a time on one system. A system writes only one SVC dump at a
time, so it does not save time to make several requests at once.

4

© Copyright IBM Corp. 2007. All rights reserved. 71

4.1 Getting or requesting dumps

Figure 4-1 Getting or requesting dumps

Diagnostic data - dumps
Different types of dumps can be used to analyze problems. The dump types and the
procedures that can be used to initiate these processes are discussed later in detail.

Dumps could best be described as a SNAPshot of the system at the time a failure is detected
by the operating system or application, or at the time the system is dumped by the operator
(console dump) via the DUMP command or the stand-alone dump procedure.

Following are the dump types that will be discussed:

� Abend dumps

� SLIP dumps

� SNAP dumps

� Stand-alone dumps

� SVC dumps

ABEND dump types
Use an ABEND dump when ending an authorized program or a problem program because of
an uncorrectable error. These dumps show:

� The virtual storage for the program requesting the dump.
� System data associated with the program.

Preallocated dump data set

Dynamically allocated dump data set

ABEND
0C4

DUMP
PARMLIB=

Dump types
SYSABEND
SYSMDUMP
SYSUDUMP

ITSO.DUMP.DATEITSO.DUMP.DATE
SYS1.DUMP00SYS1.DUMP00
72 ABCs of z/OS System Programming Volume 8

The system can produce three types of ABEND dumps:

SYSABEND The largest of the ABEND dumps, containing a summary dump for the failing
program plus many other areas useful for analyzing processing in the failing
program. This dump is formatted.

SYSMDUMP Contains a summary dump for the failing program, plus some system data for
the failing task. SYSMDUMP dumps are the only ABEND dumps that are
unformatted and must be formatted with IPCS.

SYSUDUMP The smallest of the ABEND dumps, containing data and areas only about the
failing program. This dump is formatted.

Specifying dumps via JCL
You can obtain SYSABEND, SYSUDUMP, and SYSMDUMP dumps by specifying the
appropriate DD statement in your JCL, as follows:

� SYSABEND dumps are formatted as they are created and can be directed to either DASD,
TAPE, or SYSOUT.

//SYSABEND DD SYSOUT=*

� SYSUDUMP dumps are formatted as they are created and can be directed to either
DASD, TAPE, or SYSOUT.

//SYSUDUMP DD SYSOUT=*

� SYSMDUMP dumps are unformatted and must be analyzed using the Interactive Problem
Control System (IPCS). These data sets must reside on either DASD or TAPE. Figure 4-2
shows an example of a SYSMDUMP DD statement.

Figure 4-2 SYSMDUMP DD statement

//SYSMDUMP DD DSN=MY.SYSMDUMP,DISP=(,CATLG),UNIT=DISK,
// SPACE=(CYL,(50,20),RLSE),
// LRECL=4160,BLKSIZE=4160
Chapter 4. Dump processing 73

4.2 Slip commands

Figure 4-3 SLIP commands

SLIP commands
The SLIP command controls SLIP (serviceability level indication processing), a diagnostic aid
that intercepts or traps certain system events and specifies what action to take. Using the
SLIP command, you can set, modify, and delete SLIP traps. Following are the SLIP
commands:

SLIP SET[,options],END Command for an error event trap (non-PER)

SLIP SET,IF[,options],END Command for an instruction fetch PER trap

SLIP SET,SBT[,options],END Command for a successful branch PER trap

SLIP SET,SA|SAS[,options],END Commands for a storage alteration PER trap

SLIP MOD[,options] Command to modify an existing trap

SLIP DEL[,options] Command to delete an existing trap

Setting a SLIP dump
In Figure 4-3, the operator is setting a SLIP that forces a dump in jobname abc, which is
executing a program that has an 0C4 abend at instruction 58408BAD every time it executes.
Setting the SLIP forces the program to take a dump on the occurrence of the 0C4. The
command is set as follows, as shown in the figure:

SLIP SET,C=0C4,JOBNAME=ABC

ITSO.DUMP.DATE

SYS1.DUMP00

SLIP SET,
C=0C4,
jobname=abc Jobname abc

running a program

188F LR
1831 LR
5840 8BAD L
41F0 00E5 LA

ABEND0C4
74 ABCs of z/OS System Programming Volume 8

Using SLIP with ABEND dumps
ABEND dumps can be suppressed using the SLIP command in member IEASLPxx in
SYS1.PARMLIB. These commands used to reside in member IEACMDxx in SYS1.PARMLIB
but it is recommended that you move any SLIP commands from IEACMDxx to IEASLPxx to
avoid restrictions found in other parmlib members. For example,

� IEASLPxx supports multiple-line commands; IEACMD00 does not.

� IEASLPxx does not require any special command syntax; IEACMD00 does.

Figure 4-4 shows the SLIP commands in SYS1.PARMLIB member IEASLP00.

Figure 4-4 SLIP commands in SYS1.PARMLIB member IEASLP00

SET,C=013,ID=X013,A=NOSVCD,J=JES2,END SLIP SET,C=028,ID=X028,A=NOSVCD,END SLIP
SET,C=47B,DATA=(15R,EQ,0,OR,15R,EQ,8),ID=X47B,A=NODUMP,END SLIP
SET,C=058,DATA=(15R,EQ,4,OR,15R,EQ,8,OR,15R,EQ,C,OR,15R,EQ,10,OR,
15R,EQ,2C,OR,15R,EQ,30,OR,15R,EQ,3C),ID=X058,A=NODUMP,END SLIP
SET,C=0E7,ID=X0E7,A=NOSVCD,END SLIP SET,C=0F3,ID=X0F3,A=NODUMP,END SLIP
SET,C=13E,ID=X13E,A=NODUMP,END SLIP SET,C=222,ID=X222,A=NODUMP,END SLIP
SET,C=322,ID=X322,A=NODUMP,END SLIP SET,C=33E,ID=X33E,A=NODUMP,END SLIP
SET,C=422,ID=X422,A=NODUMP,END SLIP SET,C=622,ID=X622,A=NODUMP,END SLIP
SET,C=804,ID=X804,A=(NOSVCD,NOSYSU),END SLIP
SET,C=806,ID=X806,A=(NOSVCD,NOSYSU),END SLIP
SET,C=80A,ID=X80A,A=(NOSVCD,NOSYSU),END SLIP
SET,C=9FB,ID=X9FB,A=NOSVCD,J=JES3,END SLIP
SET,C=B37,ID=XB37,A=(NOSVCD,NOSYSU),END SLIP
SET,C=D37,ID=XD37,A=(NOSVCD,NOSYSU),END SLIP
SET,C=E37,ID=XE37,A=(NOSVCD,NOSYSU),END SLIP
SET,C=EC6,RE=0000FFXX,ID=XEC6,A=NODUMP,END SLIP
SET,C=EC6,RE=0000FDXX,ID=XXC6,A=NOSVCD,END
Chapter 4. Dump processing 75

4.3 SLIP dumps

Figure 4-5 Taking SLIP dumps using the SLIP command

SLIP dumps
The SLIP command is set via the z/OS operator SLIP SET command. This is a most powerful
tool and allows for great complexity to be used to trigger a dump for a specific situation. It can
be used to check storage associated with an event and trigger a dump when that event is
true. We are going to concentrate on the most common use of the SLIP command: where it is
set to trigger a dump when a specific message is written to the console. There are two forms
of this command, as follows:

� The first, being the “old” way, where we interrogate storage being used by the WTOR
routine

� The second, the later and more understandable version of the message SLIP

SLIP using IGC0003E
It is not necessary to set SLIP traps individually and run a failing job multiple times, using one
trap for each execution until a dump is taken. You can set SLIP PER traps at multiple points in
a load module as follows: use a non-IGNORE PER trap to monitor the range that
encompasses all of the points in which you are interested, followed by several IGNORE PER
traps to prevent the SLIP action from being taken on the intervening instructions, in which you
are not interested.

SLIP dumps

SLIP using IGC0003E

SLIP processing

SLIP using MSGID

SLIP dump using a z/OS UNIX reason code

Obtaining a dump on a specific reason code
76 ABCs of z/OS System Programming Volume 8

Figure 4-6 shows a SLIP command example.

Figure 4-6 SLIP SET example

SLIP processing
This SLIP command example would interrogate the Register 1 storage owned by the WTOR
routine, IGC0003E, and check for the values, staring at offset 4, to see if they match, CSQX
(x'C3E2D8E7), and the Register 1 values starting at offset 8, 111X (x'F1F1F1C5). If the
matching message was written, in this case, by job ssid CHIN, then the MQ MSTR and CHIN
address spaces, and associated CHIN data space, will be dumped for a maximum match limit
of 1 time. No further dumps will be taken if this job generates this message again.

SLIP using MSGID
Figure 4-7 shows the new form of the SLIP message, and as you can see, is much more user
friendly because the MSGID can be included in its ASCII form, not as a HEX representation.

Figure 4-7 SLIP SET using the MSGID parameter

Another simple use of the SLIP is to capture a dump when a specific application abend
occurs. For example, you might be getting an S0C4 abend in an application program and
require an SVC dump to assist with this, instead of an application or transaction dump.
Figure 4-8 shows an example of a completion code SLIP.

Figure 4-8 Completion code SLIP example

This example will capture an SVC dump when there is an S0C4 program check interruption
while module MOD01 and job JOBXYZ are in control.

SLIP dump using a z/OS UNIX reason code
If a z/OS UNIX reason code is obtained and additional information is are required, the IBM
Support Center personnel may ask that you set a SLIP to collect a dump or trace on a
recreation of the problem. Included below are the general instructions on how to gather this
data.

SLIP SET,IF,LPAMOD=(IGC0003E,0),
DATA=(1R?+4,EQ,C3E2D8E7,1R?+8,EQ,F1F1F1C5),
JOBNAME=ssidCHIN,
JOBLIST=(ssidMSTR,ssidCHIN),
DSPNAME=('ssidCHIN'.CSQXTRDS),
SDATA=(CSA,RGN,PSA,SQA,LSQA,TRT,SUM),
MATCHLIM=1,END

SLIP SET,MSGID=CSQX111E,
JOBNAME=ssidCHIN,
JOBLIST=(ssidMSTR,ssidCHIN),
DSPNAME=('ssidCHIN'.CSQXTRDS),
SDATA=(CSA,RGN,PSA,SQA,LSQA,TRT,SUM),
MATCHLIM=1,END

SLIP SET,ENABLE,COMP=0C4,ERRTYP=PROG,JOBNAME=JOBXYZ,LPAMOD=MOD01,END
Chapter 4. Dump processing 77

Obtain a dump on a specific reason code
Figure 4-9 shows an example of a SLIP that will produce a dump on the issuance of a specific
reason code.

Figure 4-9 Register 13 reason code SLIP example

Where:

� xxxxxxxx = the 8-digit (4 byte) reason code that is to be trapped.

� j=jobname is the optional jobname that is expected to issue the error (for example
j=IBMUSER).

SLIP SET,IF,A=SYNCSVCD,
RANGE=(10?+8C?+F0?+1F4?),DATA=(13R??+b0,EQ,xxxxxxxx),DSPNAME=('OMVS'.*),
SDATA=(ALLNUC,PSA,CSA,LPA,TRT,SQA,RGN,SUM),j=jobname,END

Note: In rare instances the above SLIP will not capture the requested reason code if the
module in question does not use R13 as a data register. Your IBM software support
provider can check the specific reason code and determine if this is the reason the SLIP
did not match.
78 ABCs of z/OS System Programming Volume 8

4.4 SNAP dumps

Figure 4-10 SNAP dump processing

SNAP dump
A SNAP dump is like getting a snapshot of yourself while kicking a ball. You can go back later
and look at what you did wrong so that you can improve.

A SNAP dump shows virtual storage areas that a program, while running, requests the
system to dump. A SNAP dump, therefore, is written while a program runs, rather than during
abnormal end. The program can ask for a dump of as little as a 1-byte field to as much as all
of the storage assigned to the current job step. The program can also ask for some system
data in the dump. A SNAP dump is especially useful when testing a program. A program can
dump one or more fields repeatedly to let the programmer check intermediate steps in
calculations. For example, if a program being developed produces incorrect results, requests
for SNAP dumps can be added to the program to dump individual variables. The first time
incorrect storage is encountered should narrow down the section of code causing the error.

Obtaining a SNAP dump
Obtain a SNAP dump by taking the following steps:

1. Code a DD statement in the JCL for the job step that runs the problem program to be
dumped with a ddname other than SYSUDUMP, SYSABEND, SYSMDUMP, or another
restricted ddname. The statement can specify that the output of the SNAP dump should
be written to one of the following:

Note: A SNAP dump is written while a program runs, rather than during abnormal end.

JCL
including
SNAP DD

Soccer program

TSO.DUMP.DATE
Chapter 4. Dump processing 79

– Direct access storage device (DASD). For example,
//SNAP1 DD DSN=MY.SNAP.DUMP,DISP=(OLD)

– Printer. Note that a printer is not recommended because the printer cannot be used for
anything else while the job step is running, whether a dump is written or not.

– SYSOUT. SNAP dumps usually use SYSOUT. For example,
//SNAP1 DD SYSOUT=X

– Tape. For example,
//SNAP1 DD DSN=SNAP.TO.TAPE,UNIT=TAPE,DISP=(OLD)

2. In the problem program:
a. Specify a data control block (DCB) for the data set to receive the dump. For a standard

dump, which has 120 characters per line, the DCB must specify:
BLKSIZE=882 or 1632
 DSORG=PS
 LRECL=125
 MACRF=(W)
 RECFM=VBA

For a high-density dump, which has 204 characters per line and will be printed on an
APA 3800 printer, the DCB must specify:

 BLKSIZE=1470 or 2724
 DSORG=PS
 LRECL=209
 MACRF=(W)
 RECFM=VBA

b. Code an OPEN macro to open the DCB.

Before you issue the SNAP or SNAPX macro, you must open the DCB that you
designate on the DCB parameter, and ensure that the DCB is not closed until the
macro returns control. To open the DCB, issue the DCB macro with the following
parameters, and issue an OPEN macro for the data set:

DSORG=PS,RECFM=VBA,MACRF=(W),BLKSIZE=nnn,LRECL=xxx,
 and DDNAME=any name but SYSABEND, SYSMDUMP or SYSUDUMP

If the system loader processes the program, the program must close the DCB after the
last SNAP or SNAPX macro is issued.

c. Code a SNAP or SNAPX assembler macro to request the dump. We recommend the
use of the SNAPX macro as this allows for programs running in Access-Register (AR)
mode to cause the macro to generate larger parameter lists. In the following example,
the SNAPX macro requests a dump of a storage area, with the DCB address in register
3, a dump identifier of 245, the storage area's starting address in register 4, and the
ending address in register 5:

SNAPX DCB=(3),ID=245,STORAGE=((4),(5))

Repeat this macro in the program as many times as wanted, changing the dump
identifier for a unique dump. The system writes all the dumps that specify the same
DCB to the same data set.

d. Close the DCB with a CLOSE assembler macro.

Customizing SNAP dumps
An installation can customize the contents of SNAP dumps through the IEAVADFM or
IEAVADUS installation exits. IEAVADFM is a list of installation routines to be run and
IEAVADUS is one installation routine. The installation exit routine runs during control block
formatting of a dump when the CB option is specified on the SNAP or SNAPX macro. The
routine can format control blocks and send them to the data set for the dump. See z/OS MVS
Installation Exits, SC28-1753, for more information.
80 ABCs of z/OS System Programming Volume 8

4.5 Stand-alone dumps

Figure 4-11 Stand-alone dump

Stand-alone dump
Stand-alone dumps are not produced by z/OS but by a program called SADMP, which is
IPLed in place of z/OS. When to use a stand-alone dump is shown in Figure 4-11.

The stand-alone dump program and the stand-alone dump together form what is known as
the stand-alone dump service aid. The term stand-alone means that the dump is performed
separately from normal system operations and does not require the system to be in a
condition for normal operation. The stand-alone dump program produces a high-speed,
unformatted dump of main storage and parts of paged-out virtual storage on a tape device or
a direct access storage device (DASD). The stand-alone dump program, which you create,
must reside on a storage device that can be used to IPL.

Produce a stand-alone dump when the failure symptom is a wait state with a wait state code,
a wait state with no processing, an instruction loop, or slow processing. Stand-alone dumps
can be analyzed using IPCS.

Allocating the stand-alone dump data set
Prior to z/OS V1R7, in the SYS1.SAMPLIB data set, you can use the AMDSADDD REXX™
utility to allocate and initialize the SADMP dump data set. The dump data set must be both
allocated and initialized using the AMDSADDD REXX or IPCS SADMP dump data set utilities
panel created in z/OS V1R7, shown in Figure 4-12 on page 82.

SA-DUMPSA-DUMP
VOLUMEVOLUME

IPL
SADUMP

Central Storage

TSO
RACF

MASTER

OMVS
CATALOG

DB2

TCPIP
JES2

RASP

SMS
VTAM WLM

XCFAS

USER

BPXOINIT
ADSM

SA-DUMPSA-DUMP
VOLUMEVOLUME

SA-DUMPSA-DUMP
VOLUMEVOLUME
Chapter 4. Dump processing 81

Figure 4-12 SADMP DASD Dump Data Set Utility panel

You can EXEC this REXX utility from the ISPF data set utility option 3.4, and either VIEW (V),
BROWSE (B) or EDIT (E) the data set. You can issue the following command from the ISPF
option line and the utility prompts you as shown in Figure 4-13 on page 83.

EXEC 'SYS1.SBLSCLI0(AMDSADDD)'

Note: Beginning with z/OS v1R7, you can use the SADMP DASD dump data utility and
select option 3.6 to use a panel to create, clear, and reallocate SADMP data sets on
DASD. This utility performs the same functions associated with the AMDSADDD REXX
utility. You can also use AMDSADDD, but references to the REXX utility in
SYS1.SAMPLIB no longer exist. You must now refer to this utility in SYS1.SBLSCLIO. The
data set is placed in SBLSCLI0 rather than SAMPLIB because it is no longer a sample.

 -------------------- SADMP DASD Dump Data Set Utility -------------------
 Command ==>

 Enter/verify parameters.
 Use ENTER to perform function, END to terminate.

 Function ==> R (C - Clear, D - Define, R - Reallocate)
 DSNAME ==>

 Volume serial numbers: (1-32)
 1- 8 VOL001
 9-16
 17-24
 25-32

 Unit ==> 9345 (3380, 3390, or 9345)
 Cylinders ==> 500 (cylinders per volume)
 DSNTYPE(LARGE) ==> N (Y or N)

 Optional SMS classes: (May be required by installation ACS routines)
 StorClas ==> DataClas ==> MgmtClas ==>

82 ABCs of z/OS System Programming Volume 8

Figure 4-13 Prompts issued by the AMDSADDD REXX utility

Or, you can just enter this command and execute without prompts:

TSO EXEC 'SYS1.SBLSCLI0(AMDSADDD)''DEFINE SDD01A(WTSCPLX1.SADMP.SDD01A) 3390
10014 YES LARGE'

What function do you want?
Please enter DEFINE if you want to allocate a new dump data set
Please enter CLEAR if you want to clear an existing dump data set
Please enter REALLOC if you want to reallocate and clear an existing
 dump data set
Please enter QUIT if you want to leave this procedure
define

 Please enter VOLSER or VOLSER(dump_dataset_name)
SDD01A(WTSCPLX1.SADMP.SDD01A)
 Please enter the device type for the dump data set
 Device type choices are 3380 or 3390 or 9345
3390
 Please enter the number of cylinders
10014
 Do you want the dump data set to be cataloged?
 Please respond Y or N
Y
 TIME-08:59:31 AM. CPU-00:00:03 SERVICE-549023 SESSION-01:18:42 APRIL 9,

 Initializing output dump data set with a null record:
 Dump data set has been successfully initialized

 Results of the DEFINE request:

 Dump data set Name : WTSCPLX1.SADMP.SDD01A
 Volume : SDD01A
 Device Type : 3390

Allocated Amount : 10014

Note: The size used, 10014, and the data set type, LARGE, are new with z/OS V1R7. See
6.4, “IPCS support of large data sets” on page 141.
Chapter 4. Dump processing 83

4.6 The SADMP program

Figure 4-14 SADMP processing of dumps

The SADMP program
The SADMP program produces a high-speed, unformatted dump of main storage and parts of
paged-out virtual storage on a tape device or a direct access storage device (DASD). The
SADMP program that you create must reside on a storage device that can be used to IPL.

Create the SADMP program by using the AMDSADM macro to produce the following:

� A SADMP program that resides on DASD, with output directed to a tape volume or to a
DASD dump data set

� A SADMP program that resides on tape, with output directed to a tape volume or to a
DASD dump data set

Create the SADMP program with the following JCL as an example.

Produces a high-speed unformatted dump

Central storage and parts of virtual storage

Dump to tape or DASD

Created with AMDSADM macro

Default DASD device
84 ABCs of z/OS System Programming Volume 8

ADMSADMP macro
AMDSADMP processing does not allocate the data set or check to see that a valid MVS data
set name has been provided. Therefore, you should ensure that:

� The AMDSADDD REXX utility is used to allocate and initialize the same data set name
specified on the OUTPUT= keyword.

� The data set name specified should be fully qualified (without quotes).

� The necessary data set management steps are taken so that the SADMP dump data sets
will not be placed into a migrated state or moved to a different volume.

� Alphabetic characters appearing in the dump data set name should be specified as capital
letters.

You need to answer some questions when you plan for a stand-alone dump. Some typical
questions follow:

� Should I take a stand-alone dump to DASD or to tape?

� Can I use my current version of the stand-alone dump program to dump a new version of
z/OS?

Default DASD device
If the default DASD device is to be used and no dump data set name is provided, the SADMP
program will assume that the default dump data set name is SYS1.SADMP if the
DDSPROMPT=NO parameter was also specified. Otherwise, if DDSPROMPT=YES was
specified, the SADMP program will prompt the operator at run-time for a dump data set name
to use.

� At run-time, only a null response to message AMD001A will cause the SADMP program to
use the default device and/or dump data set name.

� Do not place a data set that is intended to contain a stand-alone dump on a volume that
also contains a page or swap data set that the stand-alone dump program may need to
dump. When SADMP initializes a page or swap volume for virtual dump processing, it
checks to see if the output dump data set also exists on this volume. If it does, the SADMP
program issues message AMD100I and does not retrieve any data from page or swap
data sets on this volume. Thus, the dump may not contain all of the data that you
requested. This lack of data may impair subsequent diagnosis.

� You cannot direct output to the SADMP residence volume.

//SADMPGEN JOB MSGLEVEL=(1,1)
//OSG EXEC PGM=AMDSAOSG
//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR
// DD DSN=SYS1.MODGEN,DISP=SHR
//DPLTEXT DD DSN=SYS1.NUCLEUS(AMDSADPL),DISP=SHR
//IPLTEXT DD DSN=SYS1.NUCLEUS(AMDSAIPD),DISP=SHR
//PGETEXT DD DSN=SYS1.NUCLEUS(AMDSAPGE),DISP=SHR
//GENPRINT DD DSN=SADMP.LIST,DISP=OLD
//GENPARMS DD *
 AMDSADMP IPL=DSYSDA,VOLSER=SPOOL2, X
 CONSOLE=(1A0,3277)
 END
/*
Chapter 4. Dump processing 85

4.7 Using stand-alone dumps

Figure 4-15 SADMP steps to create the dump

Stand-alone dump procedure
Use the following procedure to initialize the SADMP program and dump storage:

1. Select a processor that was online when the system was stopped.

2. If the processor provides a function to IPL a stand-alone dump without performing a
manual STORE STATUS, use this function to IPL SADMP. If you do not use such a
function, perform a STORE STATUS before IPLing a stand-alone dump. If the operator
does not store status, virtual storage is not dumped.

The hardware store-status facility stores the current program status word (PSW), current
registers, the processor timer, and the clock comparator into the unprefixed prefix save
area (PSA). This PSA is the one used before the nucleus initialization program (NIP)
initialized the prefix register.

If you IPL the stand-alone dump program from the hardware console, it is not necessary to
perform the STORE STATUS operation. Status is automatically stored when stand-alone
dump is invoked from the hardware console and automatic store status is on.

If the operator does not issue the STORE STATUS instruction before IPLing a stand-alone
dump, the message ONLY GENERAL PURPOSE REGS VALID might appear on the formatted
dump. The PSW, control registers, and so on, are not included in the dump.

Note: Do not use the LOAD CLEAR option because it erases main storage, which
means that you will not be able to diagnose the failure properly.

Stand-alone dump steps

Select processor that stopped

Is a STORE STATUS required ?

Find a ready device (Tape or DASD)

IPLing SADMP

Select a console defined to AMDSADMP
86 ABCs of z/OS System Programming Volume 8

3. Make the residence device ready. If it is a tape, mount the volume on a device attached to
the selected processor and ensure that the file-protect ring is in place. If it is a DASD
volume, ensure that it is write-enabled.

4. IPL SADMP

SADMP does not communicate with the operator console. Instead, SADMP loads an
enabled wait PSW with wait reason code X' 3E0000'. The IPLing of the stand-alone dump
program causes absolute storage (X'0' through X'18' and storage beginning at X'110') to
be overlaid with CCWs. You should be aware of this and not consider it as a low storage
overlay.

SADMP waits for a console I/O interrupt or an external interrupt.

5. Select the system console or an operator console with a device address that is in the
console list that you specified at SADMP generation time (in the CONSOLE keyword of
AMDSADMP). At SADMP run time, the operator can choose either a console specified
with the CONSOLE= keyword or the system console to control SADMP operation. If an
operator console is chosen, press Attention or Enter on that console. (On some consoles,
you might have to press Reset first.) This causes an interruption that informs SADMP of
the console's address. Message AMD001A appears on the console.

a. Make an output device ready. When you dump to devices that have both real and
virtual addresses (for example, dumping a VM system), specify only the real address to
the SADMP program. If you are dumping to tape, ensure that the tape cartridge is
write-enabled. If you are dumping to DASD, ensure that the DASD data set has been
initialized using the AMDSADDD REXX utility.

b. Reply with the device number for the output device. If you are dumping to a DASD
device and DDSPROMPT=YES was specified on the AMDSADMP macro, message
AMD002A is issued to prompt the operator for a dump data set. If DDSPROMPT=NO
was specified, message AMD002A is not issued and the SADMP program assumes
that the dump data set name is SYS1.SADMP.

If you reply with the device number of an attached device that is not of the required device
type, or if the device causes certain types of I/O errors, SADMP might load a disabled wait
PSW. When this occurs, use procedure B to restart SADMP.

Note: SADMP uses the PSW to communicate with the operator or systems
programmer.

Note: Pressing Enter in response to message AMD001A will cause the SADMP program
to use the default device specified on the OUTPUT= keyword of the AMDSADMP macro. If
the default device is a DASD device, then pressing the Enter key in response to message
AMD001A will cause the SADMP program to use both the default device and the dump
data set specified on the OUTPUT= keyword of the AMDSADMP macro. If no dump data
set name was provided on the OUTPUT= keyword and the DDSPROMPT=YES keyword
was specified, message AMD002A is issued to prompt the operator for a dump data set. If
DDSPROMPT=NO was specified, then the SADMP program assumes that the dump data
set name is SYS1.SADMP.
Chapter 4. Dump processing 87

4.8 SADMP processing

Figure 4-16 SADMP processing considerations

Processing the SADMP
SADMP prompts you, with message AMD011A, for a dump title. When no console is
available, run SADMP without a console.

� Ready the default output device that was specified on the OUTPUT parameter on the
AMDSADMP macro. For tapes, ensure that the tape cartridge is write-enabled. For DASD,
ensure that the dump data set has been initialized using the AMDSADDD REXX utility.

� Enter an external interruption on the processor that SADMP was IPLed from. SADMP
proceeds using the default output device and/or the default dump data set. No messages
appear on any consoles; SADMP uses PSW wait reason codes to communicate to the
operator.

Message AMD005I
When SADMP begins and finishes dumping main storage, it issues message AMD005I to
display the status of the dump. SADMP may end at this step.

Note: You can create different versions of the stand-alone dump program to dump
different types and amounts of storage. You can create different versions of the
stand-alone dump program by coding several AMDSADMP macros and varying the
values of keywords on the macros.

Procedures for processing the dump

Specify a dump title

Respond to a prompt message - AMD011A

Ready the output device

Monitor AMD095I message issued every 30 seconds

Specifying PROMPT option on AMDSADMP macro

Is additional storage required to be dumped

Considerations while taking the dump
88 ABCs of z/OS System Programming Volume 8

When SADMP begins dumping real storage it issues message AMD005I. Message AMD095I
is issued every 30 seconds to indicate the progress of the dump. Message AMD005I will be
issued as specific portions of real storage have been dumped, as well as upon completion of
the real dump. SADMP may end at this step.

PROMPTs specified
If you specified PROMPT on the AMDSADMP macro, SADMP prompts you for additional
storage that you want dumped by issuing message AMD059D.

SADMP dumps instruction trace data, paged-out virtual storage, the SADMP message log,
and issues message AMD095I every 30 seconds to indicate the progress of the dump.

When SADMP completes processing, SADMP unloads the tape, if there is one, and enters a
wait reason code X'410000'.

Considerations for taking the dump
Consider the following actions to take based on system availability and severity of problem:

� If I do dump to DASD, how much space do I need?

� Can I dump to multiple dump data sets?

� What can I name my DASD dump data sets?

� How much of the system should I dump?

� When should I specify the dump tailoring options?

� What type of security does the stand-alone dump program require?

� Should I use IEBGENER or the COPYDUMP subcommand to copy a dump to a dump to a
data set?

� What is dumped when I run the stand-alone dump program?
Chapter 4. Dump processing 89

4.9 SVC dumps

Figure 4-17 SVC dumps

SVC dump
An SVC dump provides a representation of the virtual storage for the system when an error
occurs. Typically, a system component requests the dump from a recovery routine when an
unexpected error occurs. However, an authorized program or the operator can also request
an SVC dump when diagnostic dump data is needed to solve a problem.

SVC dumps can be used in different ways:

� Most commonly, a system component requests an SVC dump when an unexpected
system error occurs, but the system can continue processing.

� An authorized program or the operator can also request an SVC dump (by using the SLIP
or DUMP commands) when they need diagnostic data to solve a problem.

SVC dump contents
SVC dumps contain a summary dump, control blocks, and other system code, but the exact
areas dumped depend on whether the dump was requested by a macro, command, or SLIP
trap. SVC dumps can be analyzed using IPCS.

SVC dump processing stores data in dump data sets that you pre-allocate manually, or that
the system allocates automatically, as needed. You can also use pre-allocated dump data
sets as a back up in case the system is not able to allocate a data set automatically. To
prepare your installation to receive SVC dumps, you need to provide SYS1.DUMPxx data

ITSO.DUMP.DATE

SYS1.DUMP00

Preallocated dump data set
(Dump data set size -
dump contents)

Dynamically allocated dump data set

ABEND
0C4

SLIP SET
90 ABCs of z/OS System Programming Volume 8

sets. These data sets will hold the SVC dump information for later review and analysis. This
section describes how to set up the SVC dump data sets.

Dump data set size
When the z/OS operating system initiates, or is instructed to dump an address space, or
multiple address spaces, the data will be written to a dump dataset on a disk device. These
data sets can be pre-allocated, as is the case with the traditional SYS1.DUMPxx data sets, or
dynamically allocated, in which case a new dataset will be allocated whenever the system
requests a dump.

In conjunction with the dump data set, the user-defined MAXSPACE parameter must be set
to ensure that sufficient memory is allocated to retain the dump information in use by the
address spaces and system areas. The recommended MAXSPACE in today's environment is
2500 MB, which is a lot different from the IBM default of 450 MB. This will need to be
increased as products, such as DB2, start to make use of 64-bit virtual address ability.

Application-related dumps can be written to a data set pointed to by the SYSMDUMP DD
statement in the JCL. The data written to the SYSMDUMP data set is always required to
diagnose application-related problems running under Language Environment control.

The DCB requirements for dump data sets are as follows:

Note: An incomplete dump, or partial dump, is 99 percent of the time, useless.
Chapter 4. Dump processing 91

4.10 Allocating SYS1.DUMPxx data sets

Figure 4-18 Allocating the SYS1.DUMPxx data sets

Allocating SYS1.DUMPxx data sets
To prepare your installation to receive SVC dumps, you need to provide SYS1.DUMPxx data
sets. These data sets will hold the SVC dump information for later review and analysis.

Allocate SYS1.DUMPxx data sets using the following requirements:

� Name the data set SYS1.DUMPxx, where xx is a decimal number of 00 through 99.

� Select a device with a track size of 4160 bytes. The system writes the dump in blocked
records of 4160 bytes. If you want to increase the Block Size for the dump data set, you
can do so as long as the blocking factor does not exceed 7, for example; 29120, and the
Record Format (RECFM) must be Fixed Block Spanned (FBS).

� Initialize with an end of file (EOF) record as the first record.

� Allocate the data set before requesting a dump. Allocation requirements are:

UNIT A permanently resident volume on a direct access device.

DISP Catalog the data set (CATLG). Do not specify SHR.

VOLUME Place the data set on only one volume. Allocating the dump data set on the
same volume as the page data set could cause contention problems during
dumping, as pages for the dumped address space are read from the page
data set and written to the dump data set.

SPACE An installation must consider the size of the page data set that will contain the
dump data. The data set must be large enough to hold the amount of data as

Name your SYS1.DUMPxx data sets - xx=00-99

Blocksize must be 4160 bytes

RECFM=FBS (Fixed block spanned)

Initialize with first record being an EOF

Allocation requirements

UNIT - DISP - Volume - Space

Managing SYS1.DUMPxx data sets

DUMPDS CLEAR,DSN=xx
92 ABCs of z/OS System Programming Volume 8

defined by the MAXSPACE parameter on the CHNGDUMP command, VIO
pages, and pageable private area pages. SVC dump processing improves
service by allowing secondary extents to be specified when large dump data
sets are too large for the amount of DASD previously allocated. An
installation can protect itself against truncated dumps by specifying
secondary extents and by leaving sufficient space on volumes to allow for the
expansion of the dump data sets. For the SPACE keyword, you can specify
CONTIG to make reading and writing the data set faster. Request enough
space in the primary extent to hold the smallest SVC dump expected.
Request enough space in the secondary extent so that the primary plus the
secondary extents can hold the largest SVC dump. The actual size of the
dump depends on the dump options in effect when the system writes the
dump.

Managing SVC dump data sets
The system writes only one dump in each SYS1.DUMPxx data set. Before the data set can
be used for another dump it can be cleared by using the DUMPDS command with the CLEAR
keyword. The format if the command is:

DUMPDS CLEAR,DSN=xx

Where xx is the SYS1.DUMPxx identifier. You can abbreviate the DUMPDS command to DD,
for example:

DD CLEAR,DSN=01

Note: Approximately 250 cylinders will be sufficient for most single address space SVC
dump requirements.
Chapter 4. Dump processing 93

4.11 Automatic allocation of SVC dump data sets

Figure 4-19 Automatic allocation of SVC dump data sets

Automatic allocation
SVC dump processing supports automatic allocation of dump data sets at the time the
system writes the dump to DASD. The dump can be allocated from a set of DASD volumes or
SMS classes. When the system captures a dump, it allocates a data set of the correct size
from the resources you specify. If automatic allocation fails, pre-allocated dump data sets are
used. If no pre-allocated SYS1.DUMPnn data sets are available, message IEA793A is issued,
and the dump remains in virtual storage. SVC dump periodically retries both automatic
allocation and writing to a pre-allocated dump data set until successful or until the captured
dump is deleted either by operator intervention or by the expiration of the CHNGDUMP
MSGTIME parameter governing message IEA793A.

DASD volumes and SMS classes
Once active, allocation to SMS classes and DASD volumes is done starting from the first
resource you added with the DUMPDS ADD command until unsuccessful, then the next
resource is used. If you have defined both DASD volumes and SMS classes, SMS classes
are used first. Allocation to DASD volumes is not multivolume or striped, while allocation to
SMS classes can be multivolume or striped, depending on how the storage class is set up by
the installation.

SVC dump supports automatic allocation:

Automatic allocation when system writes the dump

Allocates from a set of DASD volumes of SMS classes

Can specify in COMMNDxx parmlib member

By operator after IPL with DUMPDS command

Steps to initiate automatic allocation

Create a user ID for DUMPSRV address space

Authorize user ID

Create data set naming pattern

Add resources for dump using DUMPDS command
94 ABCs of z/OS System Programming Volume 8

COMMNDxx parmlib member
You can specify the command instructions to enable or disable automatic allocation either in
the COMMNDxx parmlib member, to take effect at IPL, or from the operator console at any
time after the IPL, to dynamically modify automatic allocation settings.

If you use COMMNDxx, you may want to specify DUMP=NO in the IEASYSxx parmlib
member to prevent dumps taken during IPL from being written to SYS1.DUMPxx data sets.

DUMPDS command
The DUMPDS command provides the following flexibility:

� Activate automatic allocation of dump data sets
� Add or delete allocation resources
� Direct automatic allocation to SMS or non-SMS managed storage
� Deactivate automatic allocation of dump data sets
� Reactivate automatic allocation of dump data sets
� Change the dump data set naming convention

Steps to initiate automatic allocation
Automatic allocation can be set up using the following steps:

� Set up allocation authority
� Establish a name pattern for the data sets
� Define resources for storing the data sets
� Activate automatic allocation

Add resources for dump using DUMPDS command
The steps to initiate automatic dump data set allocation are:

� Associate the DUMPSRV address space with a user ID.

� Authorize DUMPSRV's user ID to create new dump data sets.

� Set up your installation data set name pattern using the DUMPDS command:

DUMPDS NAME=SC68;.&JOBNAME;.Y&YR4;M&MON;.D&DAY;T&HR;&MIN;.S&SEQ;

� Add dump data set resources that can be used by the automatic allocation function:

DUMPDS ADD,VOL=(SCRTH1,HSM111)
DUMPDS ADD,SMS=(DUMPDA)

� Activate automatic dump data set allocation using the DUMPDS command:

DUMPDS ALLOC=ACTIVE

Note: These steps can be performed after IPL using the DUMPDS command from an
operator console, or early in IPL by putting the commands in the COMMNDxx parmlib
member and pointing to the member from the IEASYSxx parmlib member using CMD=xx.
Chapter 4. Dump processing 95

4.12 Dumping multiple address spaces in a sysplex

Figure 4-20 Considerations for dumping multiple address spaces in a sysplex

Multiple address space dumps
To dump multiple address spaces in a sysplex environment, the following examples can be
used as a guide. Create a SYS1.PARMLIB member using a IEADMCxx member containing
the following DUMP parameters shown in Figure 4-21, as follows:

� job1 = IMS Control Region Jobname - job2 = IMS DLI region Jobname
� job3 = DBRC Region Jobname - job4 = IRLM Region Jobname (If IRLM DB Locking used)

Figure 4-21 IEADMCI1 example

Figure 4-22 shows the creation of a second SYS1.PARMLIB member, IEADMCI2, containing
the following DUMP parameters:

� job5 = CCTL Region 1 - job6 = CCTL Region 2 - job7 = CCTL Region 3

Figure 4-22 IEADMCI2 example

JOBNAME=(job1,job2,job3,job4),
SDATA=(CSA,PSA,RGN,SQA,SUM,TRT,GRSQ),
REMOTE=(SYSLIST=*('job1’,’job2’,’job3’,’job4'),SDATA)

JOBNAME=(job5,job6,job7),
SDATA=(CSA,PSA,RGN,SQA,SUM,TRT,GRSQ,XESDATA),
REMOTE=(SYSLIST=*('job5’,’job6’,’job7'),SDATA)

Create a SYS1.PARMLIB member - IEADMCxx

Can create multiple members

Requesting a dump

Dumping dataspaces

Considerations using SLIP entries

SLIP examples

IEASLPxx examples
96 ABCs of z/OS System Programming Volume 8

Requesting a dump
To request a dump to be captured as per the IEADMCI1 and IEADMCI2 parmlib members,
issue the following MVS command:

DUMP TITLE=(IMS/CCTL sysplex DUMPS),PARMLIB=(I1,I2)

If the data space DSPNAME parameter is specified, for example:

DSPNAME=(‘job1’.*)

Two dump data sets are created on each MVS image in the sysplex matching the REMOTE
specifications for the JOBNAMEs. Then the same data space is dumped in the associated
address spaces in the other systems if the DSPNAME parameter is included on the REMOTE
statement. For example:

REMOTE=(SYSLIST=*('job1’,’job2’,’job3’,’job4'),SDATA,DSPNAME)

Considerations using SLIP entries
Figure 4-23 and Figure 4-24 shows and alternative where IEASLPxx has been used
containing the following SLIP entries, using the IEASLPxx example, as follows:

� job1 = IMS Control Region Jobname
� job2 = IMS DLI region Jobname
� job3 = DBRC Region Jobname
� job4 = IRLM Region Jobname (If IRLM DB Locking is used)

Figure 4-23 IEASLPxx example

� job5 = CCTL Region 1
� job6 = CCTL Region 2
� job7 = CCTL Region 3

Figure 4-24 IEASLPxx example

Before activating the SLIP, ensure that any existing PER SLIP for each MVS image in the
sysplex is disabled, as follows:

ROUTE *ALL,SLIP,MOD,DISABLE,ID=trapid

To activate the SLIP trap and trigger the associated SVC dumps, enter the following MVS
commands:

SET SLIP=xx
SLIP MOD,ENABLE,ID=IMS1

SLIP SET,IF,N=(IEAVEDS0,00,FF),A=(SYNCSVCD,TARGETID),
SDATA=(CSA,PSA,RGN,SQA,SUM,TRT,GRSQ),
JOBLIST=(job1,job2,job3,job4),ID=IMS1,TARGETID=(IMS2),
REMOTE=(JOBLIST,SDATA),D,END

SLIP SET,IF,N=(IEAVEDS0,00,FF),
JOBLIST=(job5,job6,job7),ID=IMS2,
SDATA=(CSA,PSA,RGN,SQA,SUM,TRT,XESDATA),
REMOTE=(JOBLIST,SDATA),
D,END
Chapter 4. Dump processing 97

Two dumps are then be captured on each MVS image in the sysplex matching the REMOTE
specifications.
98 ABCs of z/OS System Programming Volume 8

4.13 Managing taking a dump

Figure 4-25 Ways to manage taking a dump

Canceling jobs with a dump
Cancelling a problem task can be initiated from either an MVS console or from an SDSF
session running under TSO provided sufficient security privileges have been set up. The MVS
console has the highest dispatching priority which allows commands to be issued at a
sufficient level to handle most system loop or hang conditions. An IPL will be required if the
problem task cannot be terminated using these procedures. Attempting to cancel a looping
task via an SDSF session executing under TSO will often fail because the TSO session will
have an insufficient dispatching priority to interrupt the loop process, but this is dependant on
the severity of the looping process.

The CANCEL command can be performed as follows:

1. Issue the CANCEL jobname from the master console, where jobname is the looping task.

2. If the looping task is a TSO user, then issue, CANCEL U=tsouser.

3. Optionally, you might want to take a dump during the cancel. This is achieved by adding
the DUMP option to the CANCEL command. For example,

CANCEL jobname,DUMP

It is recommended that a separate DUMP command be issued, and after this has been
successfully processed, then CANCEL the task. This will dump according to the
SYSABEND, SYSUDUMP, or SYSMDUMP DD statements specified in the JCL.

Tasks can be canceled with a dump using:

MVS CANCEL command

CANCEL jobname,DUMP

Dump analysis and elimination (DAE)

Suppressing dumps

Using ADYSETxx parmlib member with SET DAE=xx

Handling partial dumps
Chapter 4. Dump processing 99

Dump analysis and elimination (DAE)
DAE suppresses dumps that match a dump you already have. Each time DAE suppresses a
duplicate dump, the system does not collect data for the duplicate or write the duplicate to a
data set. The ADYSETxx members in SYS1.PARMLIB control the DAE facility. If you find that
dumps are being suppressed, as indicated by the following messages: IEA820I, IEA848I or
IEA838I, please review DAE to ensure that you do not suppress this dump. A stop and start of
DAE is required to reset the dump suppression count.

A stop of DAE is done by issuing a SET DAE=xx, where the xx in the ADYSETxx member
contains a DAE=STOP,GLOBALSTOP command.

Restart DAE by SET DAE=xx, where xx is the active ADYSETxx parmlib member. This is
often ADYSET00.

Partial dumps
How can you determine if the dump that has been captured is a complete dump? A partial, or
incomplete dump will be missing some key areas of storage that in most cases will make the
dump useless when it comes to efficient problem diagnosis.

The only other way to determine whether the dump is partial is to interrogate the dump using
the Interactive Problem Control System (IPCS)—apart from the obvious message that will be
generated in the z/OS system log that indicates a dump is partial, or that the dump
MAXSPACE has been reached. Figure 4-26 shows an example of the IEA042I message.

Figure 4-26 IEA611I message indicating partial dump

Figure 4-27 shows the result of the IPCS LOCATE command that can be issued to interrogate
the storage, which will indicate if the dump taken was partial. In this case we are looking at
storage at address x’E0’ for a length of 16 bytes.

Figure 4-27 IPCS Storage Address Locate for IEA611I reason

The 4 words found at location X'E0' contain partial dump reason codes. These codes are
mapped by DSECT SDRSN, and can be found in the z/OS data areas manual. The flags are
also listed in z/OS MVS System Messages, Vol 6 (GOS-IEA), SA22-7636 under message
IEA611I. The description listed under IEA611I for x'30000000' in the second word is:

20000000 -The system detected an error in the SVC dump task and gave recovery
control.
10000000 - The SVC dump task failed.

If the values displayed at location X’E0’ are all zero, then the dump is not partial.

IEA043I SVC DUMP REACHED MAXSPACE LIMIT - MAXSPACE=xxxxxxxx MEG or
IEA611I PARTIAL DUMP ON dsname

Command ===> ip l e0. block(0) l(16)
** TOP OF DATA **************
LIST E0. BLOCK(0) LENGTH(X'10') AREA
BLOCK(0) ADDRESS(E0.)
000000E0. 00000000 30000000 00000000 00000000 |................ |
END OF DATA ***********
100 ABCs of z/OS System Programming Volume 8

4.14 Customizing dumps using SDATA options

Figure 4-28 Options to customize dumps

Customizing SVC dumps
You can customize the contents of an SVC dump, SYSABEND, SYSUDUMP, and
SYSMDUMP dumps, to meet the needs of your installation. For example, you might want to
add areas to be dumped, reduce the dump size, or dump Hiperspaces. In most cases, you will
customize the contents of an SVC dump or summary dump via the SDATA parameter of the
SDUMP or SDUMPX macro or with operator commands.

SDATA options
To check the SDUMP (SDATA) options in your system, enter the D D,O command on the
operator console. Figure 4-29 shows an example where we can see that the SDUMP options
are the default ones.

Figure 4-29 Dump options

RESPONSE=MCEVS1
 IEE857I 15.04.04 DUMP OPTION 796
 SYSABEND- ADD PARMLIB OPTIONS SDATA=(LSQA,TRT,CB,ENQ,DM,IO,ERR,SUM),
 PDATA=(SA,REGS,LPA,JPA,PSW,SPLS)
 SYSUDUMP- ADD PARMLIB OPTIONS SDATA=(SUM), NO PDATA OPTIONS
 SYSMDUMP- ADD PARMLIB OPTIONS (NUC,SQA,LSQA,SWA,TRT,RGN,SUM)
 SDUMP- ADD OPTIONS (LSQA,TRT,XESDATA),BUFFERS=00000000K,
 MAXSPACE=00000500M,MSGTIME=99999 MINUTES

Customizing dumps

SVC, SYSABEND, SYSUDUMP, SYSMDUMP

Checking SDATA options

Use operator command - d d,o

Creating SDATA options

IPCS and SDATA options
Chapter 4. Dump processing 101

Creating SDATA options
If you need to add more options, you can use the following command:

CD SET,SDUMP=(PSA,LPA,RGN,SUM,SQA,CSA)

Enter D D,O again and you should see the update shown in Figure 4-30.

Figure 4-30 SDUMP options

IPCS and SDATA options
Figure 4-31 shows the result of the IPCS control block format of the CVT to interrogate the
SDATA options that were in effect when the dump was taken. The command is:

cbf cvt+23c?+9c str(sdump) view(flags)

Figure 4-31 Example of IPCS “cbf cvt+23c?+9c str(sdump) view(flags)” command

Even though the SDATA RGN parameter has been specified, the fact that some areas of RGN
storage may have been paged out when the dump was taken can result in a “storage not
available”.

RESPONSE=MCEVS1
 IEE857I 15.24.13 DUMP OPTION 514
 SYSABEND- ADD PARMLIB OPTIONS SDATA=(LSQA,TRT,CB,ENQ,DM,IO,ERR,SUM),
 PDATA=(SA,REGS,LPA,JPA,PSW,SPLS)
 SYSUDUMP- ADD PARMLIB OPTIONS SDATA=(SUM), NO PDATA OPTIONS
 SYSMDUMP- ADD PARMLIB OPTIONS (NUC,SQA,LSQA,SWA,TRT,RGN,SUM)
 SDUMP- ADD OPTIONS (PSA,SQA,LSQA,RGN,LPA,TRT,CSA,SUMDUMP,XESDATA),
 BUFFERS=00000000K,MAXSPACE=00000500M,
 MSGTIME=99999 MINUTES
 ABDUMP- TIMEENQ=0240 SECONDS

SDUMP_PL: 00FB357C

 ==> FLAGS SET IN SDUFLAG0:
 Set system non-dispatchable while dumping global storage.

 ==> FLAGS SET IN SDUFLAG1:
 SYSMDUMP request.
 SUMLIST specified.
 Ignore CHNGDUMP parameters.
 TSO user extension is present.
 48+ byte parameter list.

 ==> FLAGS SET IN SDUSDATA:
 Dump SQA.
 Dump LSQA.
 Dump rgn-private area.
 Dump LPA mod. for rgn.
 Dump trace data.
 Dump SWA.
 Do not dump all PSA.
102 ABCs of z/OS System Programming Volume 8

4.15 Dump options and considerations

Figure 4-32 Dump options in parmlib and commands

IEADMR00 parmlib member
IEADMR00 contains IBM defaults and/or installation parameters for ABDUMP, for use when
an ABEND dump is written to a SYSMDUMP data set.

SYSMDUMP data set
ABDUMP parameters for a SYSMDUMP data set may be specified as follows:

� The dump request parameter list pointed to by the DUMPOPT keyword of an ABEND
macro. The list can be built by using the list form of the SNAP macro.

� The initial system dump options specified in IEADMR00. These options are added to the
options on the dump request parameter list.

� The system dump options as altered by the CHNGDUMP command. With the
CHNGDUMP command, options can be added to or deleted from the system dump
options list. The CHNGDUMP command can also cause the dump request parameters to
be ignored.

Note: During an IPL, an informational message will notify the operator if IEADMR00 is
invalid or cannot be found. No prompting of the operator will occur. If the member contains
both valid and invalid parameters, an informational message will indicate the valid options
that were accepted before the error occurred.

IEADRM00 parmlib member

SDATA=(parms,.......)
SDATA=(NUC,SQA,LSQA,SWA,TRT,LPA,CSA,RGN,GRSQ,ALLNUC,NOSYM,SUM)

SYSMDUMP considerations with z/OS UNIX

CHNGDUMP command

CHNGDUMP DEL - Removing options from or
resetting the system

CHNGDUMP RESET - Resetting dump mode to
ADD and the dump options to initial values

CHNGDUMP SET - Setting the dump modes and
options
Chapter 4. Dump processing 103

4.16 Catalog address space (CAS) dumps

Figure 4-33 Catalog address space dumps

MODIFY CATALOG,DUMPON syntax
MODIFY or F CATALOG, DUMPON or DUMPOFF specifies whether CAS dynamic dumping
is to occur. Dynamic dumping by CAS does not occur unless you specify DUMPON.

� MODIFY CATALOG,DUMPON

� MODIFY CATALOG,DUMPON(aaa,bbb,cc)

� MODIFY CATALOG,DUMPON(aaa,bbb,cc,nnn)

Where:

– aaa - The catalog return code in decimal (000-255), or ***

– bbb - The catalog reason code in decimal (000-255), or ***

– cc - The catalog module identifier in CAS, or **

– nnn - The limit number in decimal (000-999)

Options in parenthesis that follow the DUMPON parameter can be used to create a dump
whenever a given return code, reason code, and module identifier occur. This dump can
prove valuable to service personnel in solving problems. Normally, the return code, reason
code, and module identifier are available on return from CAS and are printed by IDCAMS.
The module identifier corresponds to the last two characters in the catalog module name. For
example, the module identifier is A3 for IGG0CLA3. The return code, reason code, and
module identifiers may be specified as a string of asterisks to indicate any value encountered
will match the value of that field. This is referred to as a generic match. All three fields may not

DUMP command for CAS

F CATALOG,DUMPON

F CATALOG,DUMPON(aaa,bbb,cc)

F CATALOG,DUMPON(aaa,bbb,cc,nnn)

aaa The catalog rc in decimal (000-255), or ***

bbb The catalog rc in decimal (000-255), or ***

cc The catalog module identifier in CAS, or **

DUMPON option

DUMPOFF option
104 ABCs of z/OS System Programming Volume 8

be simultaneously specified as asterisks. Whenever a generic match is specified for a
particular field, it will be assumed that field always matches the value being returned by
catalog for a catalog request. As an example:

MODIFY CATALOG,DUMPON(008,042,**)

will create a dump for any return code 8, reason code 42, regardless of the module that
detected the error. An option has been provided for a match count to obtain the nth
occurrence of a return code, reason code, and module identifier. The match count
decrements by one each time a return code, reason code, and module identifier is set in the
catalog address space, If this option is not specified or is set to 000, then the first occurrence
causes a dump.

Only one set of return codes, reason codes and module identifiers can be set at a time. Each
entry overwrites the previous information. Once a match occurs, the information is cleared
and the original DUMPON status is maintained. If DUMPON is entered without the additional
options, certain conditions will produce dumps automatically. If then a DUMPON with options
is entered, a match will cause a dump and the return code, reason code and module identifier
will be cleared. The DUMPON status will remain on.

MODIFY CATALOG,REPORT,DUMP can be used to view the settings.

The header for the catalog dynamic dump will contain the return code and reason code in
hex. For example:

CAS DYNAMIC DUMP-IGG0CLA9 RCX'00' RSNX'00'
Chapter 4. Dump processing 105

106 ABCs of z/OS System Programming Volume 8

Chapter 5. z/OS trace processing

Another useful source of diagnostic data is the trace. Tracing collects information that
identifies ongoing events that occur over a period of time. Some traces are running all the
time so that trace data will be available in the event of a failure. Other traces must be explicitly
started to trace a defined event.

In this chapter, the following trace activity is described:

� GTF trace

� Component trace

� Master trace

� GFS trace

� System trace

� SMS tracing

5

© Copyright IBM Corp. 2007. All rights reserved. 107

5.1 z/OS trace facilities

Figure 5-1 z/OS trace facilities

GTF trace facility
The generalized trace facility (GTF) is a service aid you can use to record and diagnose
system and program problems. GTF is part of the MVS system product, and you must
explicitly activate it by entering a START GTF command.

Use GTF to record a variety of system events and program events on all of the processors in
your installation. If you use the IBM-supplied defaults, GTF lists many of the events that
system trace lists, showing minimal data about them.

I/O trace
GTF builds an I/O record when an I/O interruption occurs and TRACE=SYSM, TRACE=SYS,
TRACE=IO, or TRACE=IOP are the GTF options in effect. To trace PCI I/O interruptions,
TRACE=PCI must also be in effect.

SYS1.TRACE
When you start GTF, a trace output data set is created and has the name SYS1.TRACE. The
data set resides on a DASD that is large enough for the data set to contain 20 physical blocks.
After completely filling the 20 physical blocks, GTF will overlay previously written records with
new trace records, starting at the beginning of the output data set.

Start
GTF
I/O Trace

System VolumeSystem Volume

I/O requests

DISPLAY TRACE command

System VolumeSystem Volume
108 ABCs of z/OS System Programming Volume 8

I/O requests
When you start GTF, one of the options is to trace I/O requests. GTF then requests recording
of all nonprogram-controlled I/O interruptions. Unless you also specify the PCI trace option,
GTF does not record program-controlled interruptions.

Using the DISPLAY TRACE command
To display the current trace option in effect issue the MVS DISPLAY TRACE command.
Figure 5-2 shows an example of the output generated by the DISPLAY TRACE command.

It shows that we have system trace (ST) enabled, with 256K allocated for the system trace
table on each processor and 3584K allocated to the system trace table buffers. Address
space (AS) tracing is ON and branch tracing is OFF, as is explicit software tracing. Master
tracing is ON with a master trace table size of 24K. This also displays the status of component
and sub-component traces.

Figure 5-2 Display trace command output

To get information for a single trace such as SYSOMVS, issue D TRACE,COMP=SYSOMVS.
The output of this command (Figure 5-3) shows that the internal trace buffer size for OMVS is
4 MB.

Figure 5-3 Display trace,comp=tracename output

RESPONSE=MCEVS1
 IEE843I 19.30.33 TRACE DISPLAY 177
 SYSTEM STATUS INFORMATION
 ST=(ON,0256K,03584K) AS=ON BR=OFF EX=ON MT=(ON,024K)
 COMPONENT MODE COMPONENT MODE COMPONENT MODE COMPONENT MODE
 --
 SYSGRS MIN SYSTCPRT OFF SYSJES2 OFF SYSANT00 MIN
 SYSANT01 MIN SYSRRS MIN SYSSPI OFF SYSJES OFF
 SYSSMS OFF SYSOPS ON SYSXCF ON SYSLLA MIN
 SYSXES ON SYSTTRC OFF SYSTCPDA OFF SYSRSM OFF
 SYSAOM OFF SYSVLF MIN IRLM OFF SYSTCPIP OFF
 SYSLOGR ON SYSOMVS ON SYSWLM MIN SYSTCPIS OFF
 SYSTCPRE OFF SYSIOS MIN JRLM OFF SYSIEFAL ON

RESPONSE=MCEVS1
 IEE843I 19.36.21 TRACE DISPLAY 490
 SYSTEM STATUS INFORMATION
 ST=(ON,0256K,03584K) AS=ON BR=OFF EX=ON MT=(ON,024K)
 COMPONENT MODE BUFFER HEAD SUBS
 --
 SYSOMVS ON 0004M
 ASIDS *NONE*
 JOBNAMES *NONE*
 OPTIONS ALL
 WRITER *NONE*
Chapter 5. z/OS trace processing 109

5.2 GTF trace definitions

Figure 5-4 GTF processing

Start GTF trace
Use a GTF trace to show system processing through events occurring in the system over
time. The installation controls which events are traced. GTF tracing uses more resources and
processor time than a system trace. Use GTF when you are familiar enough with the problem
to pinpoint the one or two events required to diagnose your system problem. GTF can be run
to an external data set as well as a buffer.

GTF procedure
When you activate GTF, it operates as a system task, in its own address space. The only way
to activate GTF is to enter a START GTF command from a console with master authority.
Using this command, the operator selects either the IBM or your cataloged procedure for
GTF. The cataloged procedure defines GTF operation; you can accept the defaults that the
procedure establishes, or change the defaults by having the operator specify certain
parameters on the START GTF command.

Because GTF sends messages to a console with master authority, enter the command only
on a console that is eligible to be a console with master authority. Otherwise, you cannot view
the messages from GTF that verify trace options and other operating information.

IBM supplies the GTF cataloged procedure, which resides in SYS1.PROCLIB. This
procedure defines GTF operation, including storage needed, where output is to go, recovery
for GTF, and the trace output data sets. Figure 5-5 on page 111 shows the format of the
IBM-supplied GTF procedure.

HILG.TRACEHILG.TRACE

Start
GTF

//GTFNEW PROC MEMBER=HILG
//IEFPROC EXEC PGM=AHLGTF,TIME=1440,REGION=6M,DPRTY=(15,15),
// PARM='MODE=EXT,DEBUG=NO,TIME=YES,BLOK=4M,SA=4M,SD=4M'
//IEFRDER DD DSNAME=HILG.TRACE,DISP=SHR
//SYSLIB DD DSNAME=SYS1.PARMLIB(&MEMBER),DISP=SHR

TRACE=IOP,PCI,CCWP,SSCHP,CSCH,HSCH,MSCH
IO=SSCH=(1667)
CCW=(SI,IOSB,CCWN=999,DATA=32,PCITAB=1)
END

 I/O
requests

GTF procedure

SYS1.PARMLIB member
110 ABCs of z/OS System Programming Volume 8

Figure 5-5 GTF procedure

SYS1.PARMLIB member for GTF
GTFPARM provides default or installation-defined trace options to control the generalized
trace facility (GTF). The member is read only when the operator (or an automatic command)
issues START GTF. GTFPARM is not used during system initialization.

The member name on the START GTF command can be the same as the IBM-supplied
cataloged procedure, GTF. The PROC statement of that procedure identifies GTFPARM as
the member from which GTF will get its trace parameters. If the installation wants to place the
GTFPARM member in a data set other than SYS1.PARMLIB, specify the alternate data set in
the SYSLIB DD statement and then specify a member from that PDS using the MEMBER
keyword, as shown in Figure 5-4 on page 110. If the installation wants to substitute another
member in place of GTFPARM, as shown in the figure, the operator may enter the
replacement member name on the START command with the MEMBER keyword.

Trace data to external devices
The two primary locations that are used to store GTF trace data are as follows:

� A data set on DASD
� Internal storage

The benefit of writing to internal storage is that if the trace is being taken to be reviewed in
conjunction with a dump, the GTF in-storage buffers will be dumped along with the address
space. You will have trace and dump data taken at the same time, and this can be reviewed
using IPCS.

//GTF PROC MEMBER=GTFPARM
//IEFPROC EXEC PGM=AHLGTF,PARM=’MODE=EXT,DEBUG=NO,TIME=YES’,
// TIME=1440,REGION=2880K
//IEFRDER DD DSNAME=SYS1.TRACE,UNIT=SYSDA,SPACE=(TRK,20),
// DISP=(NEW,KEEP)
//SYSLIB DD DSN=SYS1.PARMLIB(&MEMBER),DISP=SHR

Note: If you need to trace for an extended period of time, then writing to an external device
is advisable.
Chapter 5. z/OS trace processing 111

5.3 Implementing GTF trace

Figure 5-6 Implementing GTF tracing

Defining the GTF trace options
The GTF options can be specified through either system prompting in response to the START
GTF command or in a predefined parmlib member or data set member. However, GTF will not
use certain combinations of options. Figure 5-7 shows the GTF trace option meanings.

Figure 5-7 GTF trace options

SYSM Selected system events

USR User data that the GTRACE macro passes to GTF

TRC Trace events associated with GTF itself

DSP Dispatchable units of work

PCI Program-controlled I/O interruptions

SRM Trace data associated with the system resource manager (RSM)

Note: For these combinations, and regarding other GTF options, see z/OS MVS
Diagnosis: Tools and Service Aids, SY28-1085.

Defining GTF trace options

GTF procedure options

GTFPARM member options

GTF trace options

Starting GTF

{START | S} {GTF | membername}.identifier

Stopping GTF

{STOP | P} identifier

Display identifier - D A,LIST

GTF tracing for reason code interrogation
112 ABCs of z/OS System Programming Volume 8

GTF procedure options
We recommend that GTF be started with the following parameters, which are specified in the
GTF procedure in SYS1.PROCLIB:

PARM=’MODE(INT)’ and REGION=2880K

Options specified on the PARM parameter specify where GTF writes trace data and the
amount of storage needed for GTF to collect and save trace data in various dump types
(Figure 5-8).

Figure 5-8 GTF parameters on the PARM= in the GTF procedure

The GTF parameters SADMP, SDUMP, ABDUMP and BLOK parameters should all be set to
at least 10 MB.

GTFPARM member
Figure 5-7 on page 112 shows the IBM-supplied GTFPARM parmlib member, which contains
the GTF trace options, as follows:

TRACE=SYSM,USR,TRC,DSP,PCI,SRM

Starting GTF
To invoke GTF, the operator issues the following START command:

{START|S}{GTF|membername}.identifier

After the operator enters the START command, GTF issues message AHL100A or AHL125A
to allow the operator either to specify or to change trace options. If the cataloged procedure or
START command did not contain a member of predefined options, GTF issues message
AHL100A so the operator may enter the trace options you want GTF to use. If the procedure
or command did include a member of predefined options, GTF identifies those options by
issuing the console messages AHL121I and AHL103I. Then you can either accept these
options, or reject them and have the operator respecify new options. Figure 5-9 shows the
sequence of messages that appear on the console when starting GTF.

MODE={INT|EXT|DEFER}
SADMP={nnnnnnK|nnnnnnM|40K}
SDUMP={nnnnnnK|nnnnnnM|40K}
NOPROMPT
ABDUMP={nnnnnnK|nnnnnnM|0K}
BLOK={nnnnn|nnnnnK|nnnnnM|40K}
SIZE = {nnnnnnK|nnnnnnM|1024K}
TIME=YES
DEBUG={YES|NO}

Note: The member containing predefined trace options does not have to reside in the
parmlib member. GTF will accept any data set specified in the SYSLIB DD statement of the
cataloged procedure, or in the START command, as long as that data set's attributes are
compatible with those of SYS1.PARMLIB.
Chapter 5. z/OS trace processing 113

Figure 5-9 GTF start-up messages

Stopping GTF
The operator can enter the STOP command at any time during GTF processing. The amount
of time you let GTF run depends on your installation and the problem you are trying to
capture, but a common time is between 15 and 30 minutes.

To stop GTF processing, have the operator enter the STOP command. This command must
include either the GTF identifier specified on the START command, or the device number of
the GTF trace data set if you specified MODE=EXT or MODE=DEFER to direct output to a
data set.

If you are not sure of the identifier, or the device number of the trace data set, ask the
operator to enter the DISPLAY A,LIST command. Figure 5-10 shows the result of this
command and the GTF identifier displayed is EVENT1.

Figure 5-10 D A,LIST command

The operator must enter the STOP command at a console with master authority. The general
format of the command is:

{STOP|P} identifier

When the STOP command takes effect, the system issues message AHL006I. If the system
does not issue this message, then GTF tracing continues, remaining active until a STOP
command takes effect, or until the next initial program load (IPL). When this happens, you will
not be able to restart GTF tracing. In this case, you can use the FORCE ARM command to
stop GTF. If there were several functions started with the same identifier on the START
command, using the same identifier on the STOP command will stop all those functions.

GTF tracing for reason code interrogation
In some instances your software support provider may ask you to capture a GTF trace that
will contain all the reason codes issued by a particular job. This is more likely if the reason
code is not reported externally. If you choose to look at such a GTF trace, be aware that many
reason codes are issued validly and do not represent real errors (that is, reason codes that
indicate file not found are usually quite valid).

START GTF.EXAMPLE1
AHL121I TRACE OPTION INPUT INDICATED FROM MEMBER GTFPARM OF PDS SYS1.PARMLIB
TRACE=SYSM,USR,TRC,DSP,PCI,SRM
AHL103I TRACE OPTIONS SELECTED--SYSM,USR,TRC,DSP,PCI,SRM
*451 AHL125A RESPECIFY TRACE OPTIONS OR REPLY U
REPLY 451,U
AHL031I GTF INITIALIZATION COMPLETE

DISPLAY A,LIST
IEE114I 14.51.49 2005.181 ACTIVITY FRAME LAST F E SYS=SY1
JOBS M/S TS USERS SYSAS INITS ACTIVE/MAX VTAM OAS
00000 00003 00000 00016 00000 00000/00000 00000
LLA LLA LLA NSW S VLF VLF VLF NSW S
JES2 JES2 IEFPROC NSW S
GTF EVENT1 IEFPROC NSW S
.....................
114 ABCs of z/OS System Programming Volume 8

Prior to setting the slip below you would need to start GTF with options TRACE=SLIP. The
slip that would be set is:

SLIP SET,IF,A=TRACE,RANGE=(10?+8C?+F0?+1f4?),TRDATA=(13R??+B0,+B3),END

After recreating the problem, stop GTF and format the output using the IPCS command
GTFTRACE.
Chapter 5. z/OS trace processing 115

5.4 Component trace (CTRACE)

Figure 5-11 Implementing component trace (CTRACE)

Component trace
The component trace service provides a way for MVS components to collect problem data
about events. Each component that uses the component trace service has set up its trace in a
way that provides the unique data needed for the component.

A component trace provides data about events that occur in the component. The trace data is
intended for the IBM Support Center, which can use the trace to:

� Diagnose problems in the component
� See how the component is running

If the IBM Support Center requests a trace, the Center might specify the options, if the
component trace uses an OPTIONS parameter in its parmlib member or REPLY for the
TRACE CT command. The options are:

SYSAPPC SYSDLF SYSDSOM SYSGRS SYSIEFA SYSIOS SYSJES SYSjes2 SYSLLA SYSLOGR
SYSOMVS SYSOPS SYSRRS SYSRSM SYSTTRC SYSSPI SYSVLF SYSWLM SYSXCF SYSXES

You will typically use component trace while recreating a problem. The installation, with
advice from the IBM Support Center, controls which events are traced for a system
component. GTF does not have to be active to run a component trace.

TRACE CT,4M,
COMP=SYSOMVS

External writer

OMVS.TRACEOMVS.TRACE

SYSGRS

SYSOMVS
SYSLOGR

SYSIOS
SYSXCF SYSJES Component trace options

trace tt,wtr=dasd1
116 ABCs of z/OS System Programming Volume 8

External writer for tracing
Transaction trace supports the use of an external writer for processing transaction trace
records. An external writer can be specified on the initial command that activates transaction
trace, or specified standalone while transaction trace is active. Transaction trace uses the
MVS TRACE command with the TT keyword to start an external writer. For example:

trace tt,wtr=prt1

Component trace messages are issued in response to this command. Transaction trace
writes trace data in a transaction trace data space in the trace address space. If an external
writer has been defined, the record is also written to the external writer. IPCS is used to view
the transaction trace records.

Transaction trace external writer processing can be stopped with the use of the WTR=OFF
keyword. For example:

trace tt,wtr=off

Component trace messages are issued in response to this command.

The transaction trace TRACE TT command allows the transaction trace data space size to be
changed. The data space can be from 16 K to 999 K or 1 MB to 32 MB. For example:

trace tt,bufsiz=2m

The following message is issued:

ITZ002I 'BUFSIZ' IS SET TO 0002M

Note: In the example in Figure 5-11 on page 116, the operator is requesting a component
trace for SYSOMVS and the external writer writes the data to a DASD data set named
OMVS.TRACE
Chapter 5. z/OS trace processing 117

5.5 Implementing component trace

Figure 5-12 Options for implementing component trace

Parmlib member definitions
The CTncccx parmlib member specifies component trace options. There is a table in z/OS
MVS Diagnosis: Tools and Service Aids, SY28-1085, that shows whether a component has a
parmlib member. It indicates whether the member is a default member needed at system or
component initialization, and whether the component has default tracing. Some components
run default tracing at all times when the component is running; default tracing is usually
minimal and covers only unexpected events. Other components run traces only when
requested. When preparing your production SYS1.PARMLIB system library, do the following:

� Make sure the parmlib contains all default members identified in the table. If the parmlib
does not contain the default members at initialization, the system issues messages. The
table contains the following members:

SYSAPPC SYSDLF SYSDSOM SYSGRS SYSIEFA SYSIOS SYSJES SYSjes2 SYSLLA SYSLOGR
SYSOMVS SYSOPS SYSRRS SYSRSM SYSTTRC SYSSPI SYSVLF SYSWLM SYSXCF SYSXES

� Make sure that the IBM-supplied CTIITT00 member is in the parmlib. PARM=CTIITT00
can be specified on a TRACE CT command for a component trace that does not have a
parmlib member; CTIITT00 prevents the system from prompting for a REPLY after the
TRACE CT command. In a sysplex, CTIITT00 is useful to prevent each system from
requesting a reply.

Trace options for support center
If the IBM Support Center requests a trace, the Center might specify the options, if the
component trace uses an OPTIONS parameter in its parmlib member, or REPLY for the

SYS1.PARMLIB definitions

IBM-supplied CTIITT00 member

PARM=CTIITT00 can be specified on a TRACE CT
command

Specifying trace options

Collecting trace records

Starting component trace
118 ABCs of z/OS System Programming Volume 8

TRACE CT command. You must specify all options you would like to have in effect when you
start a trace. Options specified for a previous trace of the same component do not continue to
be in effect when the trace is started again. If the component has default tracing started at
initialization by a parmlib member without an OPTIONS parameter, you can return to the
default by doing one of the following:

� Stop the tracing with a TRACE CT,OFF command.
� Specify OPTIONS() in the REPLY for the TRACE CT command or in the CTncccxx

member.

Collecting trace records
Depending on the component, the potential locations of the trace data are:

� In address-space buffers, which are obtained in a dump
� In data-space buffers, which are obtained in a dump
� In a trace data set or sets, if supported by the component trace

If the trace records of the trace you want to run can be placed in more than one location, you
need to select the location. For a component that supports trace data sets, you should
choose trace data sets for the following reasons:

� Because you expect a large number of trace records
� To avoid interrupting processing with a dump of the trace data
� To keep the buffer size from limiting the amount of trace data
� To avoid increasing the buffer size

Starting component trace
Select how the operator is to request the trace. The component trace is started by either of
the following:

� A TRACE CT operator command without a PARM parameter, followed by a reply
containing the options

� A TRACE CT operator command with a PARM parameter that specifies a CTncccxx
parmlib member containing the options

To start a component trace, the operator enters a TRACE operator command on the console
with MVS master authority. The operator replies with the options that you specified. Instead of
using ON on the START command you can provide a trace buffer size, depending on the
component you would like to start the trace, as follows:

trace ct,on,comp=sysxcf
* 21 ITT006A
r 21,options=(serial,status),end

This example requests the same trace using parmlib member CTWXCF03. When TRACE CT
specifies a parmlib member, the system does not issue message ITT006A.

trace ct,on,comp=sysxcf,parm=ctwxcf03

It is possible to provide the CTRACE buffer size request on the start command. The following
shows the START TRACE command for USS requesting 4 MB:

trace ct,4M,comp=sysomvs
Chapter 5. z/OS trace processing 119

5.6 Component trace for System Logger

Figure 5-13 Setting up component trace for System Logger

Parmlib member example
An example for a parmlib definition for z/OS UNIX is:

CTncccxx -
CTILOG00 - z/OS UNIX parmlib member
(which must be specified in the BPXPRM00 member)

Where LOG is the ccc, and 00 is the xx and L is the n. For some components, you need to
identify the component's CTncccxx member in another parmlib member. See the parmlib
member listed in the default member column in the table in z/OS MVS Diagnosis: Tools and
Service Aids, SY28-1085.

Tracing System Logger
More subsystems are now using the z/OS System Logger for logging activity that can be used
during unit-of-recovery processing. This data was previously managed by the subsystems,
such as CICS, DB2, and MQ, but now the System Logger address space (IXGLOGR)
manages the system and subsystem log data. This can reside in a Coupling Facility, or on
DASD.

CTRACE options
Problems with Logger process will often require some additional trace data, which can be
collected by setting up the CTRACE for System Logger data as follows:

PARMLIB member example

CTncccxx - Parmlib member skeleton

CTILOG00 - System Logger parmlib member

System Logger trace as an example

Set up CTRACE options

Operator command to display trace status

SYS1.PARMLIB defintions

Starting the trace
120 ABCs of z/OS System Programming Volume 8

� Issue the following command to display the current SYSLOGR trace status:

D TRACE,COMP=SYSLOGR

� To update the CTRACE component for the z/OS System Logger, edit the SYS1.PARMLIB
member CTILOGxx. CTILOG00 is the supplied Logger CTRACE member.

Parmlib definitions
Figure 5-14 shows the CTILOGxx parmlib member and the specified options.

Figure 5-14 CTILOGxx parmlib member

For CTRACE, we recommend a 10 MB buffer size. The default is 2 MB.

Operator command to display status
Figure 5-15 shows the results of the DISPLAY TRACE command for component SYSLOGR.

Figure 5-15 DISPLAY TRACE,COMP=SYSLOGR output

Starting the trace
This parmlib member will be used when you issue the following command:

TRACE CT,COMP=SYSLOGR,PARM=CTILOGxx

There is minimal overhead with the MVS Logger CTRACE.

To start the CTRACE for the z/OS Logger and change the trace parameters, you can issue:

TRACE CT,8M,COMP=SYSLOGR
R xx,OPTIONS=(ALL),END

TRACEOPTS ON
BUFSIZE(8M)
OPTIONS('CONNECT','DATASET','SERIAL','STORAGE',
'LOGSTRM','MISC','RECOVERY','LOCBUFF')

IEE843I 01.11.36 TRACE DISPLAY 967
 SYSTEM STATUS INFORMATION
 ST=(ON,0064K,00128K) AS=ON BR=OFF EX=ON MT=(ON,024K)
 COMPONENT MODE BUFFER HEAD SUBS
 --
 SYSLOGR MIN 0002M
 ASIDS *NONE*
 JOBNAMES *NOT SUPPORTED*
 OPTIONS MINIMAL TRACING ONLY
 WRITER *NONE*
Chapter 5. z/OS trace processing 121

5.7 Master trace

Figure 5-16 Master trace

Master trace
Master trace maintains a table of the system messages that are routed to the hardcopy log.
This creates a log of external system activity, while the other traces log internal system
activity. Master trace is activated automatically at system initialization, but you can turn it on or
off using the TRACE command.

Master trace can help you diagnose a problem by providing a log of the most recently issued
system messages. For example, master trace output in a dump contains system messages
that may be more pertinent to your problem than the usual component messages issued with
a dump.

Use the master trace to show the messages to and from the master console. Master trace is
useful because it provides a log of the most recently-issued messages. These can be more
pertinent to your problem than the messages accompanying the dump itself. Master tracing is
usually activated at IPL time and the data can be reviewed with IPCS and is saved when an
SVC dump or stand-alone dump is taken.

Parmlib definitions
At initialization, the master scheduler sets up a master trace table of 24 kilobytes. A
24-kilobyte table holds about 336 messages, assuming an average length of 40
characters.You can change the size of the master trace table or specify that no trace table be
used by changing the parameters in the SCHEDxx member in SYS1.PARMLIB.

Parmlib defintions

SCHEDxx member in SYS1.PARMLIB

Starting the master trace

Change the trace table size and then start

TRACE MT,500K

TRACE MT

TRACE MT,OFF

Master trace table output with IPCS
122 ABCs of z/OS System Programming Volume 8

Starting the master trace
You can change the size of the master trace table using the TRACE command. For example,
to change the trace table size to 500 kilobytes, enter:

TRACE MT,500K

Start, change, or stop master tracing by entering a TRACE operator command from a console
with master authority. For example, to start the master tracing:

TRACE MT

To stop master tracing:

TRACE MT,OFF

You can also use the TRACE command to obtain the current status of the master trace. The
system displays the status in message IEE839I. For example, to ask for the status of the
trace, enter:

TRACE STATUS

Master trace table output
The following shows a sample of the master trace table. This is an in-storage copy of the
system log (SYSLOG) and the amount of data contained in the table is dependant on the size
of the table. Figure 5-17 shows a sample of the data contained in the Master Trace
(MTRACE).

Figure 5-17 IPCS MTRACE output

2003062 03:48:04.21 STC08076 00000090 ITSO10 SYS 1: READY FOR COMMUNICATION
2003062 03:48:33.24 STC04022 00000094 >+CSQX500I =MQU1 CSQXRCTL Channel MQM1.ITSO810 started
2003062 03:49:03.39 STC04022 00000094 >+CSQX202E =MQU1 CSQXRCTL Connection or remote listener
152 00000094 > channel MQM1.ITSO810,
152 00000094 > connection 9.9.9.90,
152 00000094 > TRPTYPE=TCP RC=00000468
2003062 03:49:03.42 STC04022 00000094 >+CSQX599E =MQM1 CSQXRCTL Channel MQM1.ITSO810 ended
2003062 03:50:01.85 ZZ4NM002 00000294 $RALL,R=*,D=W91A.*,Q=789
2003062 03:50:01.89 ZZ4NM002 00000084 $HASP683 NO JOBS OR DATA SETS REROUTED
Chapter 5. z/OS trace processing 123

5.8 GFS trace

Figure 5-18 GFS trace

GFS trace
GFS trace is a diagnostic tool that collects information about the use of the GETMAIN,
FREEMAIN, or STORAGE macro. You can use GFS trace to analyze the allocation of virtual
storage and identify users of large amounts of virtual storage. Use the generalized trace
facility (GTF) to get the GFS trace data output.

DIAGxx parmlib member
The DIAGxx parmlib member syntax is shown in Appendix C.1.1, “DIAGxx parmlib member
syntax” on page 310.

IBM provides the following parmlib members:

DIAG00 (default) Sets storage tracking on and GFS trace off.

DIAG01 Sets storage tracking on but does not change GFS trace settings.

DIAG02 Sets storage tracking off but does not change GFS trace settings.

The following procedure explains how to request a GFS trace:

1. In the DIAGxx parmlib member, set the VSM TRACE GETFREE parameter to ON and
define the GFS trace control data.

a. The following DIAGxx parmlib member starts GFS trace and limits the trace output to
requests to obtain or release virtual storage that is 24 bytes long and resides in
address spaces 3, 5, 6, 7, 8, and 9, as follows:

DIAGxx parmlib member

Defines GFS trace control parameters

VSM TRACE GETFREE (ON) ASID (3, 5-9)
LENGTH (24) DATA (ALL)

Starting a GTF trace for GFS data

Use a GTF cataloged procedure

Stopping GTS trace

Create a DIAGxx parmlib member

VSM TRACE GETFREE(OFF)

Obtaining GFS trace data

Use IPCS GTFTRACE command
124 ABCs of z/OS System Programming Volume 8

VSM TRACE GETFREE (ON) ASID (3, 5-9) LENGTH (24) DATA (ALL)

You will need another DIAGxx parmlib member defined to stop GFS tracing specifying:

 VSM TRACE GETFREE (OFF)

2. Ask the operator to enter the SET DIAG=xx command to activate GFS trace using the
definitions in the DIAGxx parmlib member.

3. Start a GTF trace (ask the operator to enter a START membername command on the
master console). The membername is the name of the member that contains the source
JCL (either a cataloged procedure or a job). Tell the operator to specify a user event
identifier X'F65' to trace GTF user trace records.

Starting a GTF trace for GFS data
The operator starts GTF tracing with cataloged procedure GTFPROC to get GFS data in the
GTF trace output. The contents of cataloged procedure GTFPROC are shown in Figure 5-19.

The operator then replies to messages AHL100A with the USRP option. When message
AHL101A prompts the operator for the keywords for option USRP, the operator replies with
USR=(F65) to get the GFS user trace records in the GTF trace output.

Figure 5-19 GTF procedure for GFS trace

Stopping GTF trace
To stop the GTF trace, ask the operator to enter a STOP procname command on the master
console. To stop GFS trace, create a DIAGxx parmlib member with:

VSM TRACE GETFREE(OFF)

The operator then enters the SET DIAG=xx command, where xx points to the created
DIAGxx parmlib member.

Obtaining GFS trace data
GTF places the GFS trace data in a user trace record with event identifier X' F65'. To obtain
GFS trace data, do one of the following:

1. When GTF writes the trace data to a data set, format and print the trace data with the
IPCS GTFTRACE subcommand.

2. When GTF writes trace data only in the GTF address space, use IPCS to see the data in
an SVC dump. Request the GTF trace data in the dump through the SDATA=TRT dump
option.

3. Issue the IPCS GTFTRACE subcommand to format and see the trace in an unformatted
dump. See the output in Appendix C.1.2, “GFS trace data” on page 310.

Note: If you want the IPCS GTFTRACE output to be formatted, you must include the
TYPE and FLAGS data items on the DATA keyword specification of the DIAGxx
parmlib member.

//GTF PROC MEMBER=GTFPROC
//* Starts GTF
//IEFPROC EXEC PGM=AHLGTF,REGION=32M,TIME=YES,
// PARM='MODE=EXT,DEBUG=NO,TIME=YES,BLOK=40K,SD=0K,SA=40K'
//IEFRDER DD DSN=MY.GTF.TRACE,
// DISP=SHR,UNIT=3390,VOL=SER=VOL001
Chapter 5. z/OS trace processing 125

5.9 System trace

Figure 5-20 System trace

System trace
System trace provides an ongoing record of hardware and software events occurring during
system initialization and operation. The system activates system tracing at initialization and
the tracing runs continuously, unless your installation has changed the IBM-supplied system
tracing. After system initialization, you can use the TRACE operator command on a console
with master authority to customize system tracing.

Because system trace usually runs all the time, it is very useful for problem determination.
While system trace and the general trace facility (GTF) list many of the same system events,
system trace also lists events occurring during system initialization, before GTF tracing can
be started. System trace also traces branches and cross-memory instructions, which GTF
cannot do.

System trace writes trace data in system trace tables in the trace address space. It maintains
a trace table for each processor. You can obtain the trace data in a dump that includes option
SDATA=TRT.

Using system trace
Use system trace to see system processing through events occurring in the system over time.
System tracing is activated at initialization and, typically, runs continuously. It records many
system events, with minimal detail about each. The events traced are predetermined, except
for branch tracing. This trace uses fewer resources and is faster than a GTF trace.

Using system trace

Controlling trace table size

TRACE ST,256K

Tracing branch instructions

TRACE ST,BR=ON

Such as BALR, BASR, BASSM, and BAKR

Problem determination

System tracing will be captured in all dump
situations by default, except during a SNAP dump

SDATA=TRT must be specified
126 ABCs of z/OS System Programming Volume 8

System trace tables reside in fixed storage on each processor. The default trace table size is
64 kilobytes per processor, but you can change it using the TRACE ST command. We do not
recommend running with trace tables smaller than the default 64 kilobytes.

Controlling trace table size
You might, however, want to increase the size of the system trace table from the default 64
kilobytes. Issue the following command to increase the system trace table size to 256K:

TRACE ST,256K

Tracing branch instructions
System tracing allows you the option of tracing branch instructions, such as BALR, BASR,
BASSM, and BAKR, along with other system events. If you want to trace branch instructions,
use the BR=ON option on the TRACE ST command when you start tracing, as follows:

TRACE ST,BR=ON

Problem determination
Because system trace usually runs all the time, it is very useful for problem determination.
While system trace and the general trace facility (GTF) lists many of the same system events,
system trace also lists events occurring during system initialization, before GTF tracing can
be started. System trace also traces branches and cross-memory instructions, which GTF
cannot do.

System tracing will be captured in all dump situations by default, except during a SNAP dump
where SDATA=TRT must be specified. Figure 5-21 shows some sample SYSTRACE data.

Figure 5-21 IPCS SYSTRACE output

Note: With branch tracing on, this can affect your system performance and use very large
amounts of storage. Do not use branch tracing as the default for system tracing on your
system. You should only use it for short periods of time to solve a specific problem. The
default system tracing does not include branch instructions.

01 000A 00AEF430 SVCR 7B 070C0000 868985D2 00000000 00000000 04379238
01 000A 00AEF430 PGM 011 070C2000 868985F2 00040011 12004000

01 000A 00AEF430 *RCVY PROG 940C4000 00000011 00000000

01 000A 00AEF430 SSRV 12D 813DE814 00AEF430 000C8000 FF3A0000
 00000000
01 000A 00AEF430 SSRV 12D 813DE830 00AEF430 000B8000 00000000
 00000000
01 000A 00AEF430 DSP 070C2000 812FADEA 00000000 00FD0E20 12004780
01 000A 00AEF430 *SVC D 070C2000 812FADEC 00000000 00FD0E20 12004780
01 000A 00AEF430 SSRV 78 86A0A4AE 0000FF50 000000C8 00AFB5D8
Chapter 5. z/OS trace processing 127

5.10 SMS tracing

Figure 5-22 SMS tracing

SMS tracing
If you need to trace the interaction between a data set allocation and SMS, collecting SMS
trace data may be of assistance. The procedures to collect and review SMS trace data are as
follows. To start and stop SMS tracing, use:

SETSMS TRACE (ON or OFF)

Control size of SMS trace table
The SIZE parameter specifies the size of the trace table in kilobytes. If you omit K or M, the
default unit is K. The default value is 128K. The maximum is 255000K or 255M. This value is
rounded up to the nearest 4K. Issue the following MVS command:

SETSMS SIZE(255M)

Select SMS tracing by jobname
You can select tracing by jobname and this limits SMS to tracing to the specified address
space. If you enter jobname(*), all address spaces are traced. If you specify ASID, omit
jobname. Issue the following MVS command:

SETSMS TRACE(ON),TYPE(ALL),SIZE(1M),DESELECT(ALL),SELECT(ALL),JOBNAME(SMS)

Start and stop SMS tracing

SETSMS TRACE (ON or OFF)

Control size of SMS trace table

SETSMS SIZE(255M)

SMS tracing by jobname

SETSMS TRACE(ON),TYPE(ALL),SIZE(1M),DESELECT(ALL),SELECT(ALL),JOBNAME(SMS)

Diagnosing SMS problems

Take a dump of the SMS address space

Using IPCS for SMS

VERBX SMSDATA 'TRACE'
128 ABCs of z/OS System Programming Volume 8

Diagnosing SMS problems
Take a dump of the SMS address space. For example:

DUMP COMM=(any dump title you desire)
R #,JOBNAME=SMS,CONT
R #,SDATA=(LPA,CSA,ALLNUC,GRSQ,LSQA,SWA,PSA,SQA,TRT, RGN,SUM)

Using IPCS for SMS
The SMS IPCS verb exit (SMSDATA) is intended for the use of diagnostic programmers who
are working with the IBM Support Center to resolve an SMS-related problem. Invoke IPCS
and review the SMS trace by issuing the following IPCS command:

VERBX SMSDATA 'TRACE'

The SMSDATA verb exit performs the following functions:

� Validates control block chains in the SMS address space.

� Formats the control blocks in the SMS address space.

� Formats the trace table in the SMS address space.

� Formats the control blocks associated with the SMS automatic data areas.
Chapter 5. z/OS trace processing 129

5.11 Trace data using an external writer

Figure 5-23 Collecting trace data with an external writer

Obtaining trace data with the external writer
By using the external writer, you can write application trace buffers directly to a trace data set
on DASD or tape rather than requesting a dump. While you might still view your trace buffers
by requesting a dump, the advantages of using the external writer are:

� You do not need to code a component trace buffer find exit routine for IPCS processing.

� Depending on the size of the trace data set, you can capture more trace data without
using valuable system resources such as central or auxiliary storage.

Creating the external writer
Create source JCL to invoke an external writer, which will send the component trace output to
one or more trace data sets. Add a procedure to the SYS1.PROCLIB system library or a job
as a member of the data set in the IEFJOBS or IEFPDSI concatenation.

An external writer is not specific for a component but can be used by any application. So you
can use the same source JCL, shown in Figure 5-24 on page 131, again for other tracing
later, if needed.

Note: While component trace runs under the master scheduler address space, you need
to verify that the priority of the external writer is at least equal to, and preferably greater
than the priority of the component being traced. For example, if you are tracing
COMP(SYSXES) for JOBNAME(IRLMA), the dispatching priority of the external writer
should be equal to or greater than that assigned to IRLMA.

Obtaining trace data with the external writer

Trace data set on DASD or tape rather than
requesting a dump

Creating the external writer

//CTWTR PROC
 //IEFPROC EXEC PGM=ITTTRCWR
 //TRCOUT01 DD DSNAME=ibmuser.ctrace1,VOL=SER=xxxxxx,UNIT=xxxx,
 // SPACE=(CYL,(xxx),,CONTIG),DISP=NEW,CATLG)
 //SYSPRINT DD SYSOUT=*

External writer example

TRACE CT,WTRSTART=ctwrtt

TRACE CT,ON,COMP=SYSTCPIP,SUB=(tcpproc)
130 ABCs of z/OS System Programming Volume 8

Figure 5-24 External writer procedure

External writer example
The following shows an example for TCPIP CTRACE to an external writer:

� Start the writer for TCPIP CTRACE where ctwrtt is a writer for CTRACE

TRACE CT,WTRSTART=ctwrtt

� Start CTRACE

TRACE CT,ON,COMP=SYSTCPIP,SUB=(tcpproc)
R xx,JOBNAME=(tcpproc,otherappljobname),options=(validoptions),WTR=ctwrtt,END

//CTWTR PROC
 //IEFPROC EXEC PGM=ITTTRCWR
 //TRCOUT01 DD DSNAME=ibmuser.ctrace1,VOL=SER=xxxxxx,UNIT=xxxx,
 // SPACE=(CYL,(xxx),,CONTIG),DISP=NEW,CATLG)
 //SYSPRINT DD SYSOUT=*

Note: Where validoptions=(PFS,TCP,SOCKET,ENGINE,SOCKAPI) for z/OS systems.
Chapter 5. z/OS trace processing 131

132 ABCs of z/OS System Programming Volume 8

Chapter 6. IPCS dump debugging

IPCS provides an interactive, online facility for diagnosing software failures. Using data sets
and active system storage, IPCS analyzes information and produces reports that can be
viewed at a Time Sharing Option Extensions (TSO/E) terminal, or can be printed.

SVC dumps, stand-alone dumps, and some traces are unformatted and need to be formatted
before any analysis can begin. IPCS provides the tools to format dumps and traces in both an
online and batch environment. IPCS provides you with commands that will let you interrogate
specific components of the operating system and allows you to review storage locations
associated with an individual task or control block. IPCS allows you to quickly review and
isolate key information that will assist with your problem determination process

Some dumps, such as CEEDUMP, are in a readable format. To debug these dumps you have
to browse them.

Dumps produced by an MVS system fall into two categories:

� Formatted dumps: SYSABEND and SYSUDUMP ABEND dumps and SNAP dumps. IPCS
cannot be used with formatted dumps.

� Unformatted dumps: SVC dumps, SYSMDUMP ABEND dumps, and stand-alone dumps.
IPCS formats and analyzes unformatted dumps.

When you submit unformatted dump data sets to IPCS, it simulates dynamic address
translation (DAT) and other storage management functions to recreate the system
environment at the time of the dump. IPCS reads the unformatted dump data and translates it
into words. For example, IPCS can identify the following:

� Jobs with error return codes

� Resource contention in the system

� Control block overlays

IPCS also helps your own dump analysis. For example, you can:

� Format control blocks. IPCS inserts field names into the output and displays the data in
columns by field.

� Browse unformatted dump storage. IPCS allows you to easily follow pointers to other
locations in the dump. It also retains addresses of certain locations in the dump.

6

© Copyright IBM Corp. 2007. All rights reserved. 133

� Reduce the size of a stand-alone dump. You can reduce the size of a stand-alone dump
as you transfer it from tape to a direct access storage device (DASD) for IPCS processing.

This chapter gives a brief overview of how to work with IPCS and get at least a useful search
argument looking for known problems or asking for IBM support, as follows:

� Setting IPCS defaults

� ASIDs to be dumped

� The VERBX MTRACE command

� The IPCS SUMMARY command

� IPCS virtual storage commands

� Using IPCS to browse dumps

� Searching IBM problem databases
134 ABCs of z/OS System Programming Volume 8

6.1 IPCS dump debugging

Figure 6-1 IPCS dump debugging

IPCS dump debugging
The interactive problem control system (IPCS) is a tool provided in the MVS system to aid in
diagnosing software failures. IPCS provides formatting and analysis support for dumps and
traces produced by MVS, other program products, and applications that run on MVS.

IPCS decides whether the source data set should be treated as a system dump by comparing
the data set to the following criteria.

The dump data must be stored on a data set with sequential (PS), direct (DA), or unidentified
(*) organization. With z/OS V1R2 and higher, IPCS also allows data stored on hierarchical file
systems (HFS) to be accessed.

IPCS dialog
Analysis of dumps is through the IPCS full-screen dialog (IPCS dialog) that is supplied with
IPCS. The IPCS dialog is an interactive dialog that you use at a terminal. It organizes the
problem analysis process into seven options:

� Set IPCS defaults.

� View formatted dump data.

� Generate and edit dump analysis reports.

� Submit dump analysis jobs for batch processing.

� Run IPCS subcommands, CLISTs, and REXX execs.

ITSO.DUMP.DATA

SYS1.DUMP00

Dumps IPCS

IPCS dialog (ISPF based)

IPCS PRIMARY OPTION MENU

HFS

Dumps
Chapter 6. IPCS dump debugging 135

� Copy dump and trace data from one data set to another.

� Manage dump and trace data set sources.

IPCS Primary Option Menu
As part of customizing access to IPCS, IBM recommends that you or your installation provide
an option for starting the IPCS dialog from an ISPF selection panel, usually the ISPF Primary
Option Menu. To start the IPCS dialog from such an ISPF panel, select the option for IPCS.

After you select the IPCS option and press Enter, the system displays the IPCS Primary
Option Menu. Figure 6-6 on page 143 shows the IPCS Primary Option Menu panel.

DUMPs on DASD and HFS
Dumps produced by an MVS system fall into two categories:

Formatted dumps SYSABEND and SYSUDUMP ABEND dumps and SNAP dumps.
IPCS cannot be used with formatted dumps.

Unformatted dumps SVC dumps, SYSMDUMP ABEND dumps, and stand-alone dumps.
IPCS formats and analyzes unformatted dumps.

When you submit unformatted dump data sets to IPCS, it simulates dynamic address
translation (DAT) and other storage management functions to recreate the system
environment at the time of the dump. IPCS reads the unformatted dump data and translates it
into words. For example, IPCS can identify the following:

� Jobs with error return codes

� Resource contention in the system

� Control block overlays
136 ABCs of z/OS System Programming Volume 8

6.2 IPCS command processing

Figure 6-2 IPCS command processing

IPCS and commands
IPCS is a problem-state, key 8 program that runs in a TSO/E user's address space. IPCS
operates in interactive and batch environments supported by TSO/E. The base of IPCS is a
TSO/E command processor. The TSO/E command “IPCS” activates the IPCS command
processor. All commands used to perform IPCS functions are “subcommands” of the IPCS
command. You can use IPCS functions from any TSO/E line mode session.

TSO/E commands for IPCS
IPCS provides three commands to be invoked from the TSO/E READY prompt. Other TSO/E
commands may have unique processing features when issued from an IPCS dialog session.
The commands are:

� IPCS
� IPCSDDIR
� SYSDSCAN

IPCS subcommands
Once you enter the IPCS command to begin an IPCS session, the IPCS subcommands are
your main tools for performing dump and trace analysis. These commands allow you to
analyze, format, view, retrieve, and copy dump and trace data, and to maintain an IPCS
session. You may use subcommands in any mode.

IPCS processes commands, subcommands, CLISTs,
and REXX execs

TSO/E commands for IPCS

IPCS subcommands

IPCS primary and line commands

REXX EXECs and CLISTs

ISPF primary commands
Chapter 6. IPCS dump debugging 137

IPCS primary and line commands
An additional set of IPCS commands are available for use in the full-screen dialog. These
commands control various panel functions. The primary commands are entered on the
COMMAND or OPTION line of the IPCS dialog. The line commands are used in the prefix
area of an IPCS dialog.

Use the IPCS primary command to invoke an IPCS subcommand, CLIST, or REXX exec from
any of the panels of the IPCS dialog. The subcommand, CLIST, or REXX EXEC is entered
exactly as though it was being invoked under IPCS in line mode. If the subcommand, CLIST,
or REXX EXEC sends a report to the terminal, you view the report using the dump display
reporter panel. The syntax is as follows:

IPCS { subcommand }
IP { clist }
 { rexx-exec }

REXX EXECs and CLISTs
You can invoke REXX EXECs and CLISTs from an IPCS session. These procedures can
enter subcommands or use other REXX and CLIST functions to analyze dumps and traces.
IPCS provides functions to store data in REXX or CLIST variables and to print data to the
IPCS dialog or print data set.

ISPF primary commands
For interactive use, the IPCS dialog uses ISPF dialog support to run as an interactive,
full-screen application. This application uses the IPCS command processor. z/OS IPCS
exploits data spaces, if permitted, to free virtual storage to allow large, complex analysis
routines to function.
138 ABCs of z/OS System Programming Volume 8

6.3 IPCS dump debug example

Figure 6-3 Dump debug

Dump debug example
Digging in a dump like one from UNIX System Services is like walking through New York
without a map. And if you have a map you might get lost anyway. This chapter provides steps
for how to start looking at a dump. It describes IPCS commands used to debug a UNIX
System Services hang scenario. A system programmer reports a TSO user process is
hanging in UNIX System Services. He dumped the TSO user and OMVS address space. In
addition, he dumped the OMVS data spaces.

IPCS dump commands
After the dump has been initialized by IPCS, check whether the dump is a complete one, as
follows:

Command ===> ip l e0. block(0) l(16)

LIST E0. BLOCK(0) LENGTH(X'10') AREA
E0. LENGTH(X'10')==>All bytes contain X'00'

Next, list the dumped address spaces:

Command ===> ip cbf rtct;f astb

ASTB

 SDAS SDF4 SDF5

ASCB

PRB

Type text hereSTCB

ASSB

TCB

ASXB
Chapter 6. IPCS dump debugging 139

 ---- ---- ----
001 0001 F8 00
002 000E 80 00
003 007F 80 00
004 0000 00 00

Get the jobnames for address space E and 7F:

Command ===> IP SELECT ASID(X'E',X'7F')

ASID JOBNAME ASCBADDR SELECTION CRITERIA
---- -------- -------- ------------------
000E OMVS 00F42E80 ASID
007F TKBNR 00F9FA00 ASID

The IPCS SUMMARY FORMAT command
Let us now have a look at address space 7F, which is the hanging TSO user. To format the
control block fields, use the SUMMARY FORMAT subcommand. Format specifies a report
containing the major control blocks associated with the specified address space.

Figure 6-4 The SUMMARY FORMAT subcommand

Command ===> IP SUMM FO ASID(X'7F')

ASCB Address Space Control Block
Contains information and pointers needed for address space control
ASSB Address Space Secondary Block
Allows address space related information to be maintained above 16 megabytes
ASXB Address Space Extension Block
Contains information and pointers needed for address space control.
TCB Task Control Block
The TCB serves as a repository for information and pointers associated with
a task.
STCB Secondary Task Control Block
The STCB allows task-related information to be kept above 16 megabytes
RB Request Block
Part of the RB is mapped by IHARB and part is mapped by IKJRB.
Maps out the following Request Blocks:
 IRB (Interrupt Request Block), which is not the
same as an Interruption Response Block. See the IRB data area description.
 PRB (Program Request Block)
 SIRB (System Interrupt Request Block)
 SVRB (SuperVisor Request Block for SVC routines)
 TIRB (Task Interrupt Request Block)
The RB control block contains information needed by the supervisor
concerning programs and routines, including save areas for all general
registers, extended registers, a save area for SVC routines, and additional
data needed for control.
140 ABCs of z/OS System Programming Volume 8

6.4 IPCS support of large data sets

Figure 6-5 IPCS and large data sets

IPCS large data sets
Files directly supported by IPCS may have the DSNTYPE=LARGE attribute in z/OS V1R7. If
you are planning to run larger LPARs, it makes sense to set aside some time to plan for larger
dumps and traces.

DSNTYPE=LARGE
The DSNTYPE=LARGE is supported in:

� Dumps

� Traces

� Other data sets viewed via RBA or BLOCK(n)

� Print file

� Table of contents file

Large dumps and traces
Large dumps and traces make performance more of a concern. So consider the following:

� Large BLKSIZEs, compression, and striping are all supported. Each can make a
significant difference.

� Good allocation for dump directories can make a significant difference in IPCS efficiency.
Compression is not recommended because directories are updated very rapidly during

DSNTYPE=LARGE supported

Dumps

Traces

Other data sets viewed via RBA or BLOCK(n)

Print file

Table of contents file

Growth and complexity makes performance a concern

Dumps and traces blocked, compressed, and striped

Dump directory with large CISIZE, large BUFSPACE,
and striped

Operational considerations
Chapter 6. IPCS dump debugging 141

IPCS analysis, but focusing on primary space, secondary space, CISIZE, BUFSPACE,
and striping can really help. If you anticipate the need to work with really large media, the
VSAM extended addressing option should be used.

� Ensure large CISIZE for the DATA portion. BLSCDDIR CLIST is updated to help. A
DSNTYPE=LARGE data set can only be used if the dump is both written and processed
on a V1R7 system or a later release. A VSAM linear data set with either an extended
format or conventional format with a control interval size (CISIZE) of 32K can be
substituted. Neither extended sequential nor VSAM data sets, other than linear data sets
with the required CISIZE, should be used.

� In addition, consider the following options:

– Ensure large (but not excessive) BUFSPACE for the directory.

– Consider striping.

– Avoid compression because of intensive updating during IPCS analysis.

Operational considerations
SADMP runs very much the same way as prior releases. From the perspective of the
operator who runs SADMP, DSNTYPE=LARGE data sets are treated just the same as the
ones used previously. The operational changes are as follows:

� SADMP tries harder to ensure that data needed to process every SADMP is written to it
early. Several page data set pages may be brought in concurrently to achieve this
acceleration if independent paths are available.

� An alteration of some messages tells the operator about progress through the three
phases, and, if the operator is sensitive to such things, a modest acceleration of capturing
data from page data sets may be sensed. Some messages are changed to reflect the
following logic and inform the operator about the phases, as follows:

– Primary phase dumps vital MVS data (PSAs, CVT, and so forth).

– Second phase dumps ASIDs 1-4.

– Third phase dumps the rest.

If installation priorities mandate cutting the dumping process short, this makes it more likely
that the truncated dump will be useful. We do not recommend truncation, but we recognize
that your specific business priorities may require it.
142 ABCs of z/OS System Programming Volume 8

6.5 Setting the IPCS defaults

Figure 6-6 Selecting the IPCS default options

Setting the IPCS defaults
Option 0 from the Primary Option Menu enables you to identify the data set that contains the
dump you will be analyzing. Figure 6-7 shows the part of the IPCS default option menu that
you change to gain access to the dump you want to process.

You may change any of the defaults listed in Figure 6-7. The defaults shown before any
changes are LOCAL. Change scope to GLOBAL to display global defaults.

Scope ==> LOCAL (LOCAL, GLOBAL, or BOTH)

If you change the Source default, IPCS will display the current default Address Space for the
new source and will ignore any data entered in the Address Space field.

Creating the defaults
The initial display will show Source ==> NODSNAME and no value in Address Space. When
you enter your dump DSNAME (in single quotes), you must manually change the
NODSNAME for DSNAME. Pressing Enter will then update the Address Space field with the
primary ASID for the dump.

When you Enter 0, the IPCS Default Option panel is
displayed and you modify the following fields:

Source ==> DSNAME('SYS1.DUMP01')
Address Space ==> ASID(X'0001')
Message Routing ==> NOPRINT TERMINAL
Message Control ==> FLAG(WARNING) NOCONFIRM VERIFY
Display Content ==> MACHINE REMARK REQUEST STORAGE SYMBOL
Chapter 6. IPCS dump debugging 143

Figure 6-7 IPCS Default Option Panel

If the dump was captured via the DUMP COMM command, the ASID will always equal
x'0001', the Master Address space, but the dump data set will also include any address
spaces that you requested to be dumped.

You will be able to change the Address Space ASID when you know what ASID dump date
you need to review.

After setting the IPCS defaults, return to the IPCS Primary Option menu (Figure 6-6 on
page 143) and select Option 6, Command. The first IPCS command you enter will start the
initialization process for the dump you have specified.

Figure 6-8 shows the messages that are issued during the initialization process.

Figure 6-8 IPCS Dump Initialization messages

After the initialization process, the address space field in the IPCS Default Values panel will
now contain the address space identifier (ASID) information stored in the dump data set
SYS1.DUMP00. For example:

 Address Space ==> ASID(X'009E')

Source ==> DSNAME('SYS1.DUMP01')
Address Space ==> ASID(X'0001')
Message Routing ==> NOPRINT TERMINAL
Message Control ==> FLAG(WARNING) NOCONFIRM VERIFY
Display Content ==> MACHINE REMARK REQUEST STORAGE SYMBOL

TIME-05:14:53 AM. CPU-00:00:46 SERVICE-673781 SESSION-00:48:42 APRIL 13
BLS18122I Initialization in progress for DSNAME(¢ SYS1.DUMP03¢)
BLS18124I TITLE=COMPID=DF115,CSECT=IGWLGMOT+1264,DATE=02/18/94,MAINTID= NONE
RC=00000024,RSN=12088C01
BLS18222I ESA mode system
BLS18160D May summary dump data be used by dump access? Enter Y to use, N to
bypass
Y Note. Enter Yes
BLS18123I 4,616 blocks, 19,202,560 bytes, in DSNAME(¢ SYS1.DUMP03¢)
IKJ56650I TIME-05:15:05 AM. CPU-00:00:46 SERVICE-702725 SESSION-00:48:53 APRIL
13

144 ABCs of z/OS System Programming Volume 8

6.6 IPCS utility menu

Figure 6-9 New option on IPCS UTILITY MENU - SADMP

IPCS utility panel
When you select Option 3 from the IPCS panel shown in Figure 6-6 on page 143, you receive
the panel shown in Figure 6-9. The IPCS Utility Menu panel provides three options for
copying data, an option for listing the names of your source data sets, and an option for the
dump analysis and elimination (DAE) data set. To invoke it, select Option 3 (Utility) from the
IPCS Primary Option Menu panel.

SADMP option
When you choose Option 6, the new SADMP DASD Dump Data Set Utility panel shown in
Figure 6-10 on page 146 is displayed. Use the SADMP option to perform the tasks associated
with creating, clearing, and reallocating of SADMP data sets on DASD.

Note: This new option is available with z/OS V1R7.

 --------------------------------- IPCS UTILITY MENU ------------------------
 OPTION ===>

 1 COPYDDIR - Copy dump directory data * USERID - ROGERS
 2 COPYDUMP - Copy a dump data set * DATE - 05/08/23
 3 COPYTRC - Copy trace data * JULIAN - 05.235
 4 DSLIST - Process list of data set names * TIME - 12:21
 5 DAE - Process DAE data * PREFIX - ROGERS
 6 SADMP - SADMP dump data set utility * TERMINAL- 3278T
 * PF KEYS - 24
 Enter END command to terminate ******************

New Option 6

SADMP dump data set utility

The panel allows you to clear, define, or reallocate a
SADMP dump data set
Chapter 6. IPCS dump debugging 145

6.7 SADMP dump data set utility

Figure 6-10 Panel to define SADMP processing

SADMP panel
This utility performs the same functions associated with the AMDSADDD REXX utility. You
can also use AMDSADDD, but references to SAMPLIB must now refer to ABLSCLI0. The
data set is placed in SBLSCLI0 rather than SAMPLIB because it is no longer a sample.

The REXX utility AMDSADDD resides in SYS1.SBLSCLI0. You can use the AMDSADDD
REXX utility to:

� Allocate and initialize the SADMP data set.

� Clear (reinitialize) the data set.

� Reallocate and initialize the data set.

The IPCS SADMP dump data set utility panel, shown in Figure 6-10, performs the same
functions as the AMDSADDD REXX utility.

Note: Systems and the applications that they support tend to get larger and more complex
over time. This impacts the dumps and traces that they produce and, in turn, may create
problems for you when you attempt to analyze problems using IPCS.

 -------------------- SADMP DASD Dump Data Set Utility -------------------
 Command ==>

 Enter/verify parameters.
 Use ENTER to perform function, END to terminate.

 Function ==> R (C - Clear, D - Define, R - Reallocate)
 DSNAME ==>

 Volume serial numbers: (1-32)
 1- 8 VOL001
 9-16
 17-24
 25-32

 Unit ==> 9345 (3380, 3390, or 9345)
 Cylinders ==> 500 (cylinders per volume)
 DSNTYPE(LARGE) ==> N (Y or N)

 Optional SMS classes: (May be required by installation ACS routines)
 StorClas ==> DataClas ==> MgmtClas ==>

146 ABCs of z/OS System Programming Volume 8

6.8 Using IPCS subcommands

Figure 6-11 IPCS subcommands

Select the IPCS subcommand entry panel
Once you enter the IPCS command to begin an IPCS session, the IPCS subcommands are
your main tools for performing dump and trace analysis. These commands allow you to
analyze, format, view, retrieve, and copy dump and trace data, and to maintain an IPCS
session. You may use subcommands in any mode.

Return to the IPCS Primary Option menu and select Option 6. When you press Enter, the
IPCS Subcommand Entry panel is displayed.

STATUS subcommand
Use the STATUS subcommand to display data usually examined during the initial part of the
problem determination process.

STATUS produces different diagnostic information depending on the report type parameter or
parameters entered: SYSTEM, CPU, WORKSHEET, and FAILDATA.

Locate failing instruction
Use the IPCS subcommand STATUS FAILDATA to locate the specific instruction that failed
and to format all the data in an SVC dump related to the software failure. This report gives
information about the CSECT involved in the failure, the component identifier, and the PSW
address at the time of the error.

IPCS Primary Option menu - Option 6
STATUS subcommand

STATUS FAILDATA subcommand
Locates instuction that failed causing the dump
Chapter 6. IPCS dump debugging 147

Diagnostic report output
The IPCS STATUS FAILDATA command shows a diagnostic report that summarizes the
failure. The following show the FAILDATA information. Figure 6-12 shows an example of the
IPCS STATUS FAILDATA report.

Figure 6-12 IPCS STATUS FAILDATA output

With the information we currently have we could perform a search of the IBM problem
databases for a possible solution, but in this instance we will pursue the problem using IPCS
to help you develop a better understanding of problem analysis techniques.

* * * DIAGNOSTIC DATA REPORT * * *
SEARCH ARGUMENT ABSTRACT
PIDS/5695DF115 RIDS/IGWLHHLS#L RIDS/IGWLGMOT AB/S00F4 PRCS/00000024
REGS/0E00C REGS/0B225 RIDS/IGWLHERR#R
Symptom Description
------- -----------
PIDS/5695DF115 Program id: 5695DF115
RIDS/IGWLHHLS#L Load module name: IGWLHHLS
RIDS/IGWLGMOT Csect name: IGWLGMOT
AB/S00F4 System abend code: 00F4
PRCS/00000024 Abend reason code: 00000024
REGS/0E00C Register/PSW difference for R0E: 00C
REGS/0B225 Register/PSW difference for R0B: 225
RIDS/IGWLHERR#R Recovery routine csect name: IGWLHERR
OTHER SERVICEABILITY INFORMATION

Recovery Routine Label: IGWFRCSD
Date Assembled: 02/18/94
Module Level: NONE
SERVICEABILITY INFORMATION NOT PROVIDED BY THE RECOVERY ROUTINE
Subfunction
Time of Error Information
PSW: 075C2000 82CC5BCC Instruction length: 02 Interrupt code: 000D
Failing instruction text: 41F00024 0A0D5880 D19C5840

Note: The STATUS FAILDATA data in this case shows that the load module that was
pointed to by the program status word (PSW) was IGWLHHLS, the CSECT within that load
module was IGWLGMOT, the abend code (0F4), and the abend reason code (0024). This
information is also displayed during the initialization of the dump data set but is not
formatted as it is here.
148 ABCs of z/OS System Programming Volume 8

6.9 SADMP analysis and COPYDUMP

Figure 6-13 SADMP analysis

SADMP analysis considerations
When doing SADMP analysis, consider the following when processing dumps:

� IPCS analysis of dumps in place is not recommended for multi-volume dumps to DASD.

� Use IPCS COPYDUMP since it produces a dump that IPCS can process more efficiently
than one copied by IEBGENER or similar programs. This subcommand, COPYDUMP,
can be issued from the panel shown in Figure 6-11 on page 147.

Dump testing with CISIZE
Use a compressed extended sequential data set as a target. This could save about 40% of
DASD for large data sets. Figure 6-14 on page 150 shows an 87 GB dump, with SADMP,
unloaded using IEBGENER. This performance test was to see whether dump directory
performance could be improved by simply striping it. Appropriate SMS classes, with a dump
directory striped 5 ways, was used to try to improve performance. The result was a dump
initialization that completed in 36 minutes.

The version of IPCS with which all preceding runs had taken place was z/OS V1R6 IPCS. A
dump directory striped 5 ways and using z/OS V1R7 IPCS resulted in a one third reduction in
initialization time and brought it down to 24 minutes.

IPCS analysis of dump in place not recommended for
multi-volume dumps to DASD

IEBGENER and similar programs not recommended
for transcription of multi-volume dumps to DASD

IPCS COPYDUMP recognizes SADMP “striping”

Now has ability to merge the records from a
multi-volume SADMP and recapture the prioritized
order used by SADMP to get the most important data
into the dump data sets first

Use compressed extended sequential data set as a
target - IBM testing has seen roughly 40% saving of
DASD for these large data sets
Chapter 6. IPCS dump debugging 149

Figure 6-14 Improvement in dump directory size for performance

Striping support
Striping spreads sections, or stripes, of a data set across multiple volumes and uses
independent paths, if available, to those volumes. The multiple volumes and independent
paths accelerate sequential reading and writing of the data set, reducing the time during
which dump I/O competes with production I/O.

It is recommended that the number of stripes match the number of volumes you use. This
combination will yield the best performance because MVS data management allows random
access to any record as though it appeared on a single volume. This is particularly useful
during an IPCS analysis of a dump. The savings when loading the data set are real but
smaller, the result of reducing the number of times end of volume processing comes into play.

In a striped data set, when the last volume receives a stripe, the next stripes are placed on
the first volume, the second volume, the third, and so on to the last volume, then back to the
first volume.

24K CISIZE, 5 stripes, V1R7 IPCS24

24K CISIZE, 5 stripes, V1R6 IPCS36

24K CISIZE, V1R6 IPCS54

4K CISIZE, V1R6 IPCS3600

IPCSDDIR Characteristics Dump intializtion elapsed
Time (minutes)
150 ABCs of z/OS System Programming Volume 8

6.10 IPCS COPYDUMP

Figure 6-15 Using the IPCS COPYDUMP subcommand

IPCS COPYDUMP
IPCS COPYDUMP is the recommended method to copy an SADMP dump data set. IPCS
COPYDUMP can run without a dump directory being employed. IPCS COPYDUMP is
enhanced with z/OS V1R7 as follows:

� Input may be a list of ddnames or dsnames to accommodate SADMP overflow. SADMP
can fill one dump data set, ask the operator for another, and write overflow records to the
second. It can also go from a 2nd to a 3rd and so on. IPCS COPYDUMP has been
updated to accept a list of input data sets to bring such dumps back together for analysis.

� Original multi-volume SADMP detected:

– All volumes accessed in parallel.
– Records merged to recover SADMP placement of important data first.
– DSNTYPE=LARGE supported for input and output.

Use COPYDUMP to copy the SADMP dump data sets from the data sets which they were
initially written into to a second type of extended format dump data set. This makes the
special repositories that the installation tends to set aside for SADMP use maximally available
for reuse, and produces a dump data set that IPCS can process more efficiently. SADMP
sees a multi-volume dump data set as though it were volume-count separate sequential
repositories. DFSMS sees all records on volume 1 followed by all records on volume 2, and
so on. Transcription multi-volume SADMPs using COPYDUMP reconciles the two views and
produces a data set where the most important records appear early in the dump data set, not
scattered across N volumes.

Use COPYDUMP to copy the SADMP dump data
sets from the data sets which they were initially
written into

Creates a second type of extended format dump
data set

This makes the special repositories that an
installation tends to set aside for SADMP use
maximally available for reuse

This produces a dump data set that IPCS can
process more efficiently
Chapter 6. IPCS dump debugging 151

6.11 Using subcommands

Figure 6-16 Using subcommands

What ASIDs have been dumped
The SELECT ALL command shows what address spaces were active when the dump was
taken. It does not show what address spaces are included in the dump. Figure 6-19 on
page 153 shows an example of the IPCS SELECT ALL command.

SELECT CURRENT command
The SELECT CURRENT command displays the address space that was executing at the
point in time the dump was initiated. If the dump was issued via a console dump command,
the SELECT CURRENT command will display the Master scheduler address space.
Figure 6-17 shows the IPCS SELECT CURRENT output.

Figure 6-17 IPCS SELECT CURRENT output

This shows that the CONSOLE ASID was dispatched at the time of the abend.

If the dump was taken while in cross-memory mode, both address spaces involved in the
cross-memory operation will be included in the dump. Figure 6-18 on page 153 shows the
IPCS SELECT CURRENT output, showing the ASIDs involved in the cross-memory function.

ASID JOBNAME ASCBADDR SELECTION CRITERIA
---- -------- -------- ------------------
000A CONSOLE 00FB4400 CURRENT

SELECT ALL command

What ASIDs have been dumped

SELECT CURRENT command

Display address space executing when dump is taken

SUMMARY FORMAT and VERBEXIT LOGDATA

Use for SLIP dumps and DUMPs from a console
152 ABCs of z/OS System Programming Volume 8

Figure 6-18 IPCS SELECT CURRENT cross-memory output

SLIP and console dumps
For SLIP dumps or dumps initiated from consoles, use SUMMARY FORMAT or VERBEXIT
LOGDATA instead of STATUS FAILDATA. Any valid IPCS command would have started the
initialization process and the related display that results after initialization. It should be noted
that the dump is only initialized the first time it is referenced via IPCS, and will only be
initialized again if the dump is deleted from the IPCS inventory.

Figure 6-19 IPCS SELECT ALL output

ASID JOBNAME ASCBADDR SELECTION CRITERIA
---- -------- -------- ------------------
0033 CICSFILE 00F4E680 CURRENT
008E CICSJG03 00ED8100 CURRENT

ASID JOBNAME ASCBADDR SELECTION CRITERIA
---- -------- -------- ------------------
0001 *MASTER* 00FD1480 ALL
0002 PCAUTH 00FBDB80 ALL
0003 RASP 00FBDA00 ALL
0004 TRACE 00FBD880 ALL
0005 DUMPSRV 00FBD700 ALL
0006 XCFAS 00FB4700 ALL
0007 GRS 00FB4580 ALL
0008 SMSPDSE 00FA1480 ALL
0009 SMSVSAM 00FA1300 ALL
000A CONSOLE 00FB4400 ALL
000B WLM 00FB4280 ALL
000C ANTMAIN 00FB4100 ALL
000D ANTAS000 00FA3780 ALL
000E OMVS 00FAF080 ALL
0010 IEFSCHAS 00FBFE80 ALL
0011 JESXCF 00FBFD00 ALL
0012 ALLOCAS 00FBF300 ALL
0013 IOSAS 00FBF180 ALL
0014 IXGLOGR 00FA3600 ALL
0015 SMF 00FA3480 ALL
007C CMAS 00F43400 ALL
007D CAS 00F43580 ALL
007E EYUX140 00F43280 ALL
0080 MQT1CHIN 00F45700 ALL
0081 MQC1CHIN 00F38500 ALL
0082 NETMOPS 00F57B80 ALL
0084 NETMSNA 00F57880 ALL
0086 IOAOMON1 00F57580 ALL
0087 XCOM 00F57280 ALL
0088 CICSCCTR 00F57100 ALL
0089 DWTSPAS 00F63B80 ALL
008B CICSUA1B 00F4E280 ALL
008C CICSCA3B 00F47A00 ALL
008D CICSTA3B 00F47880 ALL
Chapter 6. IPCS dump debugging 153

6.12 Analyzing dumps

Figure 6-20 Analyzing dumps

Identify address spaces in a dump
To identify which address spaces are contained in the dump, you can also use IPCS as
follows:

1. Format the CVT (IPCS command CBF CVT)

Use the CBFORMAT (CBF) primary command to format a control block. CBF CVT formats
the CVT control block which contains the ASIDs that are in the dump.

2. Issue a FIND command for RTCT to locate the address of the Recovery Termination
Control Table (RTCT).

Use the FIND primary command to search through all dump output for a single occurrence
of a specified value.

3. At offset +x'10C' in the RTCT begins a list of 1-word entries for the address spaces in the
dump. The first half of the word contains the ASID.

268 (10C) CHARACTER 64 RTCTASTB SVC DUMP ASID TABLE

Figure 6-21 on page 155 shows the commands required to determine what address spaces
are contained in the dump. The field SDAS contains the ASIDs that are present in the dump.

Identifying address spaces in a dump

CBFORMAT command to format control blocks

CBF CVT

FIND command to locate words

CBF RTCT

RTCT to locate ASIDs

FIND ASTB

SELECT ASIDLIST command

select asidlist(x'3eb',x'45f',x'445',x'8a',x'10f')
154 ABCs of z/OS System Programming Volume 8

Figure 6-21 IPCS control block format output of RTCT for the ASTB (SVC DUMP ASID TABLE)

SELECT ASIDLIST command
The select address space identifier (ASID) service scans the ASCBs in a dump by following
the pointers in the ASVT and then generates a list of entries for selected address spaces
within that dump. The select ASID service returns a list of ASCBs meeting selection criteria.
The ASID service also creates storage maps entries for ASCBs, which indirectly improve
performance.

The select address space identifier (ASID) service scans the ASCBs in a dump by following
the pointers in the ASVT and then generates a list of entries for selected address spaces
within that dump. The select ASID service returns a list of ASCBs meeting selection criteria.
The ASID service also creates storage maps entries for ASCBs, which indirectly improves
performance.

Figure 6-22 shows the result of the following IPCS SELECT ASIDLIST command where you
use the ASID values returned in the previous format of the RTCT ASTB shown in Figure 6-21.
In Figure 6-22, the ASIDs and associated JOBNAMEs that are contained in the dump are
displayed.

select asidlist(x'3eb',x'45f',x'445',x'8a',x'10f')

Figure 6-22 IPCS SELECT ASIDLIST command output

cbf rtct;f astb

ASTB

 SDAS SDF4 SDF5
 ---- ---- ----
001 03EB F8 00
002 045F F8 00
003 0445 F8 00
004 008A F8 00
005 010F F8 00
006 0000 00 00
007 0000 00 00

ASID JOBNAME ASCBADDR SELECTION CRITERIA
---- -------- -------- ------------------
008A MQT1CHIN 00ED8A00 ASID
010F IMSTFAFM 00F0E280 ASID
03EB IMSTCTL 00F60D00 ASID
0445 MQT1MSTR 00F17700 ASID
045F IMSTDLI 00FA2B80 ASID :
Chapter 6. IPCS dump debugging 155

6.13 IPCS trace commands - MTRACE

Figure 6-23 Tracing the master trace table with IPCS

VERBX MTRACE subcommand
The VERBEXIT MTRACE subcommand has no parameters. Specify the MTRACE verb name
on the VERBEXIT subcommand to display:

Figure 6-24 on page 157 shows an example of the VERBX MTRACE output display the
master trace table which is similar to the SYSLOG output.

The VERBX MTRACE command displays the following:

� The master trace table entries for the dumped system. This table is a wraparound data
area that holds the most recently issued console messages in a first-in, first-out order.

The MTRACE output in Figure 6-25 on page 157 shows a small sample of what is
contained in the MTRACE. In this sample we see details of the symptom dump for our
problem.

All data that is displayed on the MVS master console will be captured in the master trace
table. The amount of data kept is related to the master trace table buffer size.

� The NIP hard-copy message buffer

� The branch entry and NIP time messages on the delayed issue queue

Tracing master trace table

VERBX MTRACE subcommand

IPCS Trace Processing panel

Option 3 - MTRACE

IPCS MVS Dump Component Data Analysis panel

MTRACE option
156 ABCs of z/OS System Programming Volume 8

Figure 6-24 IPCS VERBX MTRACE output

IPCS Trace Processing panel
The MTRACE can also be obtained by using the IPCS Trace Processing panel. The IPCS
Trace Processing panel, shown in Figure 6-25, displays a menu of trace formatting options.
Invoke it by selecting option 7 (TRACE) from the Analysis of Dump Contents panel or by
entering option 2.7 from the IPCS Primary Option Menu panel, shown in Figure 6-6 on
page 143.

After choosing a trace processing option (and specifying parameters for certain options),
IPCS processes the request for the current default source and displays the formatted trace
data on a dump display reporter panel.

Figure 6-25 Using IPCS Trace Processing panel for trace information in the dump

IPCS MVS Dump Component Data Analysis panel
Entering 2.6 on the IPCS primary option menu panel displays the Dump Component Data
Analysis panel, bypassing the Analysis of Dump Contents Menu panel. From this IPCS panel
you can specify the MTRACE option. For a display of this panel, see Figure C-2 on page 312.

00000090 IEA995I SYMPTOM DUMP OUTPUT
137 00000090 SYSTEM COMPLETION CODE=0F4 REASON CODE=00000024
137 00000090 TIME=17.21.42 SEQ=00084 CPU=0000 ASID=0008
137 00000090 PSW AT TIME OF ERROR 075C2000 82CC5BCC ILC 2 INTC 0D
137 00000090 NO ACTIVE MODULE FOUND
137 00000090 NAME=UNKNOWN
137 00000090 DATA AT PSW 02CC5BC6 - 41F00024 0A0D5880 D19C5840
137 00000090 GPR 0-3 12088C0C 440F4000 00000008 00000583
137 00000090 GPR 4-7 00FD1060 12088C0C 06BA3998 7F7697C8
137 00000090 GPR 8-11 00FD102C 02CC79A5 02CC69A6 02CC59A7
137 00000090 GPR 12-15 82CC49A8 7F769B48 82CC5BC0 00000024
137 00000090 END OF SYMPTOM DUMP

 BLSPTRC1 ------------------ IPCS Trace Processing

 OPTION ===>

 To display trace information, enter the corresponding option number.

 1 CTRACE - Component trace
 2 GTFTRACE - Generalized trace facility
 3 MTRACE - Master trace
 4 SYSTRACE - System traces
 5 MERGE - Merge multiple traces
 T TUTORIAL - Details on these traces

 Enter END command to terminate IPCS trace processing.
Chapter 6. IPCS dump debugging 157

6.14 SYSTRACE command

Figure 6-26 Using the system trace with the SYSTRACE command

Examining the system trace
The system trace table describes the events in the system leading up to the error. The trace
table is helpful when the PSW does not point to the failing instruction, and to indicate what
sequence of events preceded the abend.

Because system trace usually runs all the time, it is very useful for problem determination.
While system trace and the general trace facility (GTF) lists many of the same system events,
system trace also list events occurring during system initialization, before GTF tracing can be
started. System trace also traces branches and cross-memory instructions, which GTF
cannot do.

SYSTRACE command
The system trace can be examined by issuing the SYSTRACE command from the IPCS
subcommand entry panel shown in the visual. Issuing the SYSTRACE command on its own
will display trace entries associated with the dumped ASID only. Issuing the SYSTRACE ALL
command will display all system trace entries. To display the time field in local time, add the
TIME(LOCAL) parameter. A complete system trace command is as follows:

 SYSTRACE ALL TIME(LOCAL)

Reviewing system trace data
Figure 6-27 shows a small sample of the system trace. The time stamps would appear on the
right-hand side of the display but have been removed for presentation reasons.

Examining the system trace

SYSTRACE command

SYSTRACE ALL TIME(LOCAL)

Reviewing system trace data

Use FIND command to locate *SVC

Locate the trace entry that indicates the abend
158 ABCs of z/OS System Programming Volume 8

The system trace report marks important or significant entries with an asterisk (*). The system
trace data can be best reviewed by going to the end of the trace output, and issuing a FIND
“*SVC” PREV command. This should help you locate the trace entry that indicates the abend.
Another useful trace point to search for is *RCVY, which indicates a recovery action. Entries
prior to this can assist with problem diagnosis. An SVC D is the abend SVC. Note that the
PSW, which is the same as identified in previous steps will point to the next instruction to be
processed.

The SVC trace entries are as follows:

� An SVC trace entry is for processing of a Supervisor Call (SVC) instruction.

� An SVCE trace entry is for an error during processing of an SVC instruction.

� An SVCR trace entry is for return from SVC instruction processing.

Figure 6-27 IPCS SYSTRACE ALL output

The actual SVC identified in the SYSTRACE is the hexadecimal identification. This must be
converted to decimal to enable the correct research, for example:

The SYSTRACE entry for SVC 78 would convert to a decimal SVC number of 120, which,
when referencing z/OS MVS Diagnosis Reference, SY28-1084, would identify the
GETMAIN/FREEMAIN SVC.

This is an example of just one of the many trace entries that are created during the life of a
z/OS task. For a further explanation of other trace entries, you can reference z/OS Diagnosis:
Tools and Service Aids, SY28-1085.

SYSTRACE Example 1 (*SVC)

CP ASID TCB TRACE ID PSW R15 R0 R1
--|----|--------|-----------|-----------------|---------|--------|-
00 0008 007FD720 *SVC D 075C2000 82CC5BCC 00000024 12088C0C
00 0008 007FD720 SSRV 78 828BC3F0 0000FF50 000000C8
 00080000
00 0008 007FD720 SSRV 78 828BC41A 0000FF70 00000FB0
 00080000
00 0008 007FD720 EXT 1005 070C0000 813B54AC 00001005

 SYSTRACE Example 2 (*RCVY)

00 0153 008DA530 SSRV 78 40E5269C 4050E612 000002B8
 01530000
00 0153 008DA530 SSRV 78 80E52704 4050E612 00000080
 01530000
02 0013 008C5E88 *RCVY PROG 940C4000 00000011

02 0013 008C5E88 SSRV 78 8109CADC 4000EF50 00000818
 00010000
02 0013 008C5E88 *RCVY FRR 070C0000 9056FBE8 940C4000 00000011
Chapter 6. IPCS dump debugging 159

6.15 IPCS SUMMARY subcommand

Figure 6-28 Using SUMMARY subcommand to locate failing TCB

SUMMARY subcommand
Use the SUMMARY subcommand to display or print dump data associated with one or more
specified address spaces.

Using SUMMARY produces different diagnostic reports depending on the report type
parameter, FORMAT, KEYFIELD, JOBSUMMARY, and TCBSUMMARY, and the address
space selection parameters, ALL, CURRENT, ERROR, TCBERROR, ASIDLIST, and
JOBLIST. Specify different parameters to selectively display the information you want to see.
See Figure C-3 on page 313 for a display of all the parameters with the SUMMARY
subcommand.

SUMMARY FORMAT command
The SUMMARY FORMAT command displays task control block (TCB) and other control
block information. By issuing the MAX DOWN, or M PF8 command the TCB summary will be
located.

TCB summary
The TCB summary can be located at the end of an IPCS summary format report as shown in
the following example. By reviewing the data in the CMP field, we see that TCB 007FD588

Note: Installation exit routines can be invoked at the system, address space, and task level
for each of the parameters in the SUMMARY subcommand.

SUMMARY subcommand

SUMMARY subcommand parameters

SUMMARY FORMAT

Displays task control block (TCB) and other control
block information

TCB summary

RTM2WA area
160 ABCs of z/OS System Programming Volume 8

has a non-zero CMP field that reflects the 440F44000 abend. Figure 6-29 shows the TCB
Summary.

Figure 6-29 TCB Summary at the bottom of the SUMMARY FORMAT display

RTM2WA area
By issuing a FIND “TCB: 007FD588” prev command, the failing TCB data is displayed in the
Summary Format display. From this point, you can locate the RTM2WA area. This can
contain information that in many cases identifies the failing program.

In the TCB summary, find the task control block (TCB) for the failing task. This TCB has the
abend code as its completion code in the CMP field. In the TCB summary, obtain the address
of the recovery termination manager 2 (RTM2) work area (RTM2WA) for the TCB.

In the RTM2WA summary, obtain the registers at the time of the error and the name and
address of the abending program.

If the RTM2WA summary does not give the abending program name and address, probably
an SVC instruction abnormally ended.

If the RTM2WA summary gives a previous RTM2WA for recursion, the abend for this dump
occurred while an ESTAE or other recovery routine was processing another, original abend.
In recursive abends, more than one RTM2WA may be created. Use the previous RTM2WA to
diagnose the original problem.

* * * * T C B S U M M A R Y * *
JOB SMXC ASID 0008 ASCB 00FBC580 FWDP 00FBC400 BWDP 00F4E600 PAGE
TCB AT CMP NTC OTC LTC TCB BACK PAGE
007FE240 00000000 00000000 00000000 007FDE88 007FF1D8 00000000 000014
007FF1D8 00000000 00000000 007FE240 00000000 007FDE88 007FE240 000018
007FDE88 00000000 007FF1D8 007FE240 007FD588 007FDB70 007FF1D8 000021
007FDB70 00000000 00000000 007FDE88 00000000 007FD588 007FDE88 000024
007FD588 440F4000 02000000 00000000 00000000 00000000 007FBFB8 000026
Chapter 6. IPCS dump debugging 161

6.16 What is VERBX

Figure 6-30 VERBEXIT subcommand for exit routines

IPCS VERBEXIT subcommand
You use the VERBEXIT subcommand to run an installation-supplied or IBM-supplied verb
exit routine. One of the more common IPCS commands is VERBEXIT (VERBX). VERBX
supports a product-specific exit routine that can be used to format the dump. See Figure C-4
on page 314.

VERBX example
For example, to format dump data for CICS/TS Release 1.3 we would use the exit routine
DFHPD530. This program is supplied with CICS/TS Release 1.3 to enable you to format the
CICS/TS-specific data.

For example, the commands could be used as follows:

� Format the CICS Dispatcher data contained in the dump.

VERBX DFHPD640 ‘DS=1’

� Format the IMS save area.

VERBX IMSDUMP ‘imsjobname FMTIMS savearea’

� Format the DB2 thread data.

VERBX DSNWDMP ‘verbx dsnwdmp 'sumdump=no,subsys=itso,ds=1'

IPCS VERBEXIT subcommand

Supports a product specific exit routine

VERBX example for CICS

Format the CICS dispatcher data in the dump

Verb exit routine

Generates a unique diagnostic report

Can process:

Installation application storage

IBM component data areas and storage

Define verb exit routine
EXIT EP(name) VERB(verb_name) AMASK(X'aaFFFFFF')
ABSTRACT('text') HELP(helppanel)
162 ABCs of z/OS System Programming Volume 8

Verb exit routine
A verb exit routine can generate a unique diagnostic report that is not currently available in
IPCS. A verb exit routine can process either:

� Installation application storage

� IBM component data areas and storage

Verb exit routines can be defined in BLSCUSER, in the IPCSPARM concatenation data set,
or invoked by name. Define the verb exit routine in the BLSCUSER parmlib member with the
following statement:

EXIT EP(name) VERB(verb_name) AMASK(X'aaFFFFFF')
ABSTRACT('text') HELP(helppanel)

The variables are as follows:

name The exit routine name.

verb_name The exit routine verb name.

aa Can be either:

�00 - Indicates 24-bit storage accessing.

�7F - Indicates 31-bit storage accessing.

text The abstract shown on the component data analysis panel entry associated
with this verb exit.
Chapter 6. IPCS dump debugging 163

6.17 IPCS VERBX LOGDATA command

Figure 6-31 VERBEXIT LOGDATA subcommand and LOGREC reports

LOGDATA verb
Specify the LOGDATA verb name on the VERBEXIT subcommand to format the LOGREC
buffer records that were in storage when the dump was generated. LOGDATA locates the
LOGREC records in the LOGREC recording buffer and invokes the EREP program to format
and print the LOGREC records. The records are formatted as an EREP detail edit report.

LOGDATA report
Use the LOGDATA report to examine the system errors that occurred just before the error
that caused the dump to be requested.

Examining the LOGREC buffer
Use the IPCS subcommand VERBEXIT LOGDATA to view the LOGREC buffer in a dump.
This report might repeat much of the information contained in the STATUS FAILDATA report,
but it helps to identify occasions when multiple error events caused the software failure.

Viewing the LOGDATA report
When viewing the VERBEXIT LOGDATA report, skip the hardware records to view the
software records. Search for the first software record. Figure 6-32 on page 165 shows the
start of the last error log entry displayed.

LOGDATA verb name in VERBEXIT subcommand

LOGDATA report

Examining the LOGREC buffer

Viewing the LOGDATA report

LOGREC reports
164 ABCs of z/OS System Programming Volume 8

Figure 6-32 VERBX LOGDATA output

System error log
Another valuable source of diagnostic information in the dump are the system error log
entries, which are created for all hardware and software error conditions. To review these
records the VERBX LOGDATA command can be used and the last records should relate to
the abend. This is not always the case, but reviewing this data from the last entry and moving
backwards in time can often present information that relates to the problem or may indicate
what the cause was. This may indicate a hardware or software error. In our case, the logdata
does include records for our problem and is representative of data already found.

TYPE: SOFTWARE RECORD REPORT: SOFTWARE EDIT REPORT DAY.
(SVC 13) REPORT DATE: 103.99
FORMATTED BY: IEAVTFDE HBB6601 ERROR DATE: 103.99
MODEL: 9021 HH:MM:SS
SERIAL: 060143 TIME: 17:21.42
JOBNAME: MSTJCL00 SYSTEM NAME:
ERRORID: SEQ=00080 CPU=0000 ASID=0008 TIME=17:21:42.3
SEARCH ARGUMENT ABSTRACT
PIDS/5695DF115 RIDS/IGWLHHLS#L RIDS/IGWLGMOT AB/S00F4 PRCS/00000024
REGS/0C7E8 RIDS/IGWLHERR#R
SYMPTOM DESCRIPTION
------- -----------
PIDS/5695DF115 PROGRAM ID: 5695DF115
RIDS/IGWLHHLS#L LOAD MODULE NAME: IGWLHHLS
RIDS/IGWLGMOT CSECT NAME: IGWLGMOT
AB/S00F4 SYSTEM ABEND CODE: 00F4
PRCS/00000024 ABEND REASON CODE: 00000024
REGS/0E00C REGISTER/PSW DIFFERENCE FOR R0E: 00C
REGS/0C7E8 REGISTER/PSW DIFFERENCE FOR R0C: 7E8
RIDS/IGWLHERR#R RECOVERY ROUTINE CSECT NAME: IGWLHERR
OTHER SERVICEABILITY INFORMATION
RECOVERY ROUTINE LABEL: IGWFRCSD
DATE ASSEMBLED: 02/18/94
MODULE LEVEL: NONE
SERVICEABILITY INFORMATION NOT PROVIDED BY THE RECOVERY ROUTINE
SUBFUNCTION
TIME OF ERROR INFORMATION
PSW: 075C2000 82CC5190 INSTRUCTION LENGTH: 02 INTERRUPT CODE: 000D
FAILING INSTRUCTION TEXT: 41F00024 0A0DBF0F D1D44780
Chapter 6. IPCS dump debugging 165

6.18 Using the SYS1.LOGREC

Figure 6-33 Using SYS1.LOGREC data

Viewing SYS1.LOGREC
The system error log can also be interrogated via a batch utility. The program used to extract
this data from either the online error log data set, SYS1.LOGREC, or a historical error log
data set is, IFCEREP1. This program can be used to produce hardware and software failure
reports in both a summary and detailed format. Figure 6-34 shows the JCL required to
process a software summary report.

Figure 6-34 IFCEREP1 sample JCL

//LOGREC JOB,..........
//STEP1 EXEC PGM=IFCEREP1,PARM=CARD
//SYSPRINT DD SYSOUT=*
//SERLOG DD DSN=SYS1.LOGREC,DISP=SHR
//DIRECTWK DD UNIT=SYSDA,SPACE=(CYL,5,,CONTIG)
//EREPPT DD SYSOUT=(*,DCB=BLKSIZE=133)
//TOURIST DD SYSOUT=(*,DCB=BLKSIZE=133)
//SYSIN DD *
PRINT=PS
TYPE=SIE
ACC=N
TABSIZE=512K
ENDPARM
//

Viewing SYS1.LOGREC

Batch job - EXEC PGM=IFCEREP1

LOGREC data in a CF log stream

Batch job accessing the log stream

LOGREC data in a log stream

Contains records for all systems in a sysplex

Component information
166 ABCs of z/OS System Programming Volume 8

LOGREC data in a CF
If your LOGREC data is stored in a Coupling Facility (CF) log stream data set you can use the
IFCEREP1 program to access this. Figure 6-35 shows the JCL that will enable you to produce
error log reports from the log stream data set.

Figure 6-35 IFCEREP1 JCL to format Coupling Facility LOGREC data

LOGREC reports
When generating error log reports from log stream data it should be remembered that the log
stream data set contains error information for all systems in the sysplex connected to the
Coupling Facility. You should use the SYSTEM option of the SUBSYS parameter to filter the
log stream records. Date and time parameters will also assist with the filtering.

Component information
Other information is included in the error log information in the component data. This can
assist with isolating the specific product that is being affected and the maintenance level of
the module that detected the failure. The maintenance level or service release level is also
known as the PTF level, or you might be requested for the replacement modification identifier
(RMID). It should be noted that the maintenance level of the failing load module is not
necessarily the maintenance level of the failing CSECT, or module, within the load module.

Figure 6-36 shows some of the component data that can be located in the system error log.

Figure 6-36 LOGREC error component data

//LOGREC1 JOB,.........
//EREPLOG EXEC PGM=IFCEREP1,REGION=4M,
// PARM=(¢ HIST,ACC=N,TABSIZE=512K,PRINT=PS,TYPE=SIE¢)
//ACCIN DD DSN=sysplex.LOGREC.ALLRECS,
// DISP=SHR,
// SUBSYS=(LOGR,IFBSEXIT,¢ FROM=(1999/125),TO=YOUNGEST¢ ,
// ¢ SYSTEM=SC42¢) ,
// DCB=(RECFM=VB,BLKSIZE=4000)
//DIRECTWK DD UNIT=SYSDA,SPACE=(CYL,5,,CONTIG)
//TOURIST DD SYSOUT=*,DCB=BLKSIZE=133
//EREPPT DD SYSOUT=*,DCB=BLKSIZE=133
//SYSABEND DD SYSOUT=*
//SYSIN DD DUMMY

COMPONENT INFORMATION:
COMPONENT ID: 5695DF115
COMPONENT RELEASE LEVEL: 1B0
PID NUMBER: 5695DF1
PID RELEASE LEVEL: V1R2
SERVICE RELEASE LEVEL: UW04733
DESCRIPTION OF FUNCTION: PDSE LATCH SUPPORT
PROBLEM ID: IGW00000
SUBSYSTEM ID: SMS
Chapter 6. IPCS dump debugging 167

6.19 IPCS virtual storage commands

Figure 6-37 Virtual storage data

Virtual storage information
Interrogating Virtual Storage usage in a dump is achieved by using the IPCS VERBX
VSMDATA command. Some examples of this command are:

VERBX VSMDATA ‘LOG SUMMARY’
VERBX VSMDATA 'OWNCOMM' (Check Common Storage Tracking)
VERBX VSMDATA 'OWNCOMM DETAIL ALL SORTBY(ASIDADDR)'
VERBX VSMDATA 'OWNCOMM DETAIL ASID(ddd) SORTBY(TIME)'
VERBX VSMDATA 'NOGLOBAL,JOBNAME(xxxxDBM1)'

The VERBX VSMDATA parameters are shown in Figure C-5 on page 314.

The VERBX VSMDATA command also supports a SUMMARY parameter, which provides a
more concise report designed specifically for diagnosis of out of storage conditions. This
report, generated by the VERBEXIT VSMDATA 'SUMMARY' subcommand, formats key data
from the following VSM control blocks:

� Address queue anchor table (AQAT)

� Allocated element (AE)

� Double free element (DFE)

� Descriptor queue element (DQE)

� Free block queue element (FBQE)

� Free queue element (FQE)

Summary of Key Information from LDA (Local Data Area) :

STRTA = 34000 (ADDRESS of start of private storage area)
SIZA = BCC000 (SIZE of private storage area)
CRGTP = B6000 (ADDRESS of current top of user region)
LIMIT = BCC000 (Maximum SIZE of user region)
LOAL = 8E000 (TOTAL bytes allocated to user region)
HIAL = 4E000 (TOTAL bytes allocated to LSQA/SWA/229/230 region)
SMFL = FFFFFFFF (IEFUSI specification of LIMIT)
SMFR = FFFFFFFF (IEFUSI specification of VVRG)

ESTRA = CE00000 (ADDRESS of start of extended private storage area)
ESIZA = 73200000 (SIZE of extended private storage area)
ERGTP = CE63000 (ADDRESS of current top of extended user region)
ELIM = 73200000 (Maximum SIZE of extended user region)
ELOAL = 61000 (TOTAL bytes allocated to extended user region)
EHIAL = 388000 (TOTAL bytes allocated to extended LSQA/SWA/229/230)
SMFEL = FFFFFFFF (IEFUSI specification of ELIM)
SMFER = FFFFFFFF (IEFUSI specification of EVVRG)

VERBX VSMDATA 'LOG SUMMARY'

Virtual storage information
Obtain by using VERBX VSMDATA subcommand
168 ABCs of z/OS System Programming Volume 8

� Global data area (GDA)

� Local data area (LDA)

The end of the VSMDATA LOG SUMMARY display has this interesting summary that can be
very helpful for assisting with S878/80A abends. Figure 6-38 on page 170, and Figure 6-39
on page 171 show a sample of the data displayed for the Virtual Storage Manager™.
Chapter 6. IPCS dump debugging 169

Figure 6-38 VERBX VSMDATA storage map output

L O C A L S T O R A G E D A T A S U M M A R Y
LOCAL STORAGE MAP

| |80000000 <- TOP OF EXT. PRIVATE
| Extended |
| LSQA/SWA/229/230 |80000000 <- MAX EXT. USER REGION ADDRESS
|___________________________|7EB8E000 <- ELSQA BOTTOM
| |
| (Free Extended Storage) |
|___________________________|30C77000 <- EXT. USER REGION TOP
| |
| Extended User Region |
|___________________________|2AF00000 <- EXT. USER REGION START
: :
: Extended Global Storage :
=======================================<- 16M LINE
: Global Storage :
:___________________________: A00000 <- TOP OF PRIVATE
| |
| LSQA/SWA/229/230 |
|___________________________| 9B3000 <- LSQA BOTTOM
| |
| (Free Storage) | 986000 <- MAX USER REGION ADDRESS
|___________________________| 564000 <- USER REGION TOP
| |
| User Region |
|___________________________| 6000 <- USER REGION START
: System Storage :
:___________________________: 0
Input Specifications:

Region Requested => 0
 IEFUSI/SMF Specification => SMFL : 980000 SMFEL: 79E00000
 SMFR : 880000 SMFER: 79800000
 Actual Limit => LIMIT: 980000 ELIM : 55100000
Summary of Key Information from LDA (Local Data Area) :
STRTA = 6000 (ADDRESS of start of private storage area)
SIZA = 9FA000 (SIZE of private storage area)
CRGTP = 564000 (ADDRESS of current top of user region)
LIMIT = 980000 (Maximum SIZE of user region)
LOAL = 54F000 (TOTAL bytes allocated to user region)
HIAL = 4D000 (TOTAL bytes allocated to LSQA/SWA/229/230 region)
SMFL = 980000 (IEFUSI specification of LIMIT)
SMFR = 880000 (IEFUSI specification of VVRG)
ESTRA = 2AF00000 (ADDRESS of start of extended private storage area)
ESIZA = 55100000 (SIZE of extended private storage area)
ERGTP = 30C77000 (ADDRESS of current top of extended user region)
ELIM = 55100000 (Maximum SIZE of extended user region)
ELOAL = 5CE7000 (TOTAL bytes allocated to extended user region)
EHIAL = C07000 (TOTAL bytes allocated to extended LSQA/SWA/229/230)
SMFEL = 79E00000 (IEFUSI specification of ELIM)
SMFER = 79800000 (IEFUSI specification of EVVRG)
170 ABCs of z/OS System Programming Volume 8

Subpool usage summary
This SUMMARY report also generates the following:

� Global storage map
� Global subpool usage summary
� Local storage map
� Local subpool usage summary

Following is a SUBPOOL storage usage summary for each TCB.

Figure 6-39 VERBX VSMDATA subpool usage summary

Note: The Global and Local subpool usage summaries reflect pages that have all or some
of the page allocated. You can find information about the allocation of a particular page in
the VSM control blocks representing the page.

LOCAL SUBPOOL USAGE SUMMARY

 TCB/OWNER SP# KEY BELOW ABOVE TOTAL
 --------- --- --- ----- ----- -----

9FF410 129 0 340000 3100000 3440000
 9FF410 130 8 100000 1200000 1300000

9FF410 130 9 80000 200000 280000
 9FF410 131 8 4000 62B000 62F000
 9FF410 132 4 0 1E000 1E000
 9FF410 132 8 C000 86000 92000
 LSQA 205 0 0 A3000 A3000
 LSQA 215 0 0 19000 19000
 LSQA 225 0 0 15000 15000
 9FFE88 229 0 0 D000 D000
 9FFBF8 229 0 0 1C000 1C000
 9FF5A8 229 0 1000 2000 3000
 9FF410 229 0 0 1000 1000
 9FF180 229 0 0 1000 1000
 9FB280 229 0 0 8000 8000
 9ECE88 229 0 0 1000 1000
 9ECAD8 229 0 3000 9000 C000
Chapter 6. IPCS dump debugging 171

6.20 Using IPCS to browse storage

Figure 6-40 Browsing storage with IPCS

Browse storage in a dump using IPCS
Another function of IPCS is the ability to browse storage locations with the dump. There will
be many times when you will need to look at storage locations in a dump using IPCS.
Normally you browse storage locations once you have been viewing other options in the
dump. Select the BROWSE (Option 1) from the IPCS primary option menu, shown in
Figure 6-6 on page 143. The next panel will identify the current dump data set, as shown in
Figure 6-41 on page 173.

Select address to display
Once you place an address in the Address (Pointer: field) in Figure 6-41 on page 173, the
address appears in Figure 6-42 on page 173.

Browse storage in a dump using IPCS

Select addess to display
------------------------- IPCS - ENTRY PANEL ---------------------------------
Command ==>

 CURRENT DEFAULTS:
 Source ==> DSNAME('DUMP.D0506.H15.SC65.GABERT1.S00011')
 Address space ==> ASID(X'008A')

 OVERRIDE DEFAULTS: (defaults used for blank fields)
 Source ==> DSNAME('DUMP.D0506.H15.SC65.GABERT1.S00011')
 Address space ==>
 Password ==>

 POINTER:
 Address ==> (blank to display pointer stack)
 Remark ==> (optional text)

Place an address in the field, hit Enter and the
storage is displayed
172 ABCs of z/OS System Programming Volume 8

Figure 6-41 IPCS BROWSE storage panel

From this panel you can do a select (S) on the address, as shown in Figure 6-42.

Figure 6-42 IPCS BROWSE storage Select option

Storage address displayed
Figure 6-43 shows the storage at location 01329D48—storage starting at that address.

Figure 6-43 IPCS BROWSE selected storage

------------------------- IPCS - ENTRY PANEL ---------------------------------
Command ==>

 CURRENT DEFAULTS:
 Source ==> DSNAME('DUMP.D0506.H15.SC65.GABERT1.S00011')
 Address space ==> ASID(X'008A')

 OVERRIDE DEFAULTS: (defaults used for blank fields)
 Source ==> DSNAME('DUMP.D0506.H15.SC65.GABERT1.S00011')
 Address space ==>
 Password ==>

 POINTER:
 Address ==> (blank to display pointer stack)
 Remark ==> (optional text)

DSNAME('DUMP.D0506.H15.SC65.GABERT1.S00011') POINTERS ------------------------
Command ===> SCROLL ===> CSR
ASID(X'008A') is the default address space
PTR Address Address space Data type
S0003 01329D48. ASID(X'008A') AREA
 Remarks:

ASID(X'008A') ADDRESS(01329D48.) STORAGE -------------------------------------
Command ===> SCROLL ===> CSR
01329D48 50E0D004 91802021 | &\}.j... |
01329D50 47806124 45E0631A 47F0629E BF8F208C | ../..\...0...... |
01329D60 47806184 58B08008 9501B018 47706162 | ../d....n...../. |
01329D70 1F11BF17 B0014100 00484130 00FA45E0 |\ |
Chapter 6. IPCS dump debugging 173

6.21 Using IPCS to find the failing instruction

Figure 6-44 Finding the failing instruction in a dump

Find failing instruction in a dump
Normally when analyzing certain dumps, one of the first things to determine is to find the
failing instruction. The STATUS FAILDATA report also helps you find the exact instruction
that failed. This report—an example is shown in Figure C-6 on page 315 and Figure C-7 on
page 316—provides the PSW address at the time of the error and the failing instruction text.
Note that the text on this screen is not always the failing instruction text. Sometimes the PSW
points to the place where the dump was taken and not the place where the error occurred.
See Figure 6-11 on page 147, for the STATUS subcommand. On that display you issue the
STATUS FAILDATA subcommand.

From the report, the PSW and failing instruction text are as follows:

PSW: 070C1000 81329D48 Instruction length: 02 Interrupt code: 000D
Failing instruction text: 00181610 0A0D50E0 D0049180

Failing instruction text
This contains 12 bytes of the instruction stream at the time of the error, including the actual
instruction that caused the abend. Starting at the end of the sixth byte, subtract the instruction
length to indicate the failing instruction. In the preceding example, the failing instruction is
X'0A0D'.

Find failing instruction in a dump

Use STATUS FAILDATA subcommand - gets report

Report shows the following:

Failing instruction text
Detail edit report for a software record

Report is produced by EREP and, through the
VERBEXIT LOGDATA subcommand, under IPCS
Use detail edit report for a software record to
determine the cause of an abend, and the recovery
action that the system or application needs to take

PSW: 070C1000 81329D48 Instruction length: 02 Interrupt code: 000D
Failing instruction text: 00181610 0A0D50E0 D0049180
174 ABCs of z/OS System Programming Volume 8

Detail edit report for a software record
The detail edit report for a software record shows the complete contents of an error record for
an abnormal end, including the system diagnostic work area (SDWA). The report is produced
by EREP and, through the VERBEXIT LOGDATA subcommand, under IPCS.

Use the detail edit report for a software record to determine the cause of an abend, and the
recovery action that the system or application has either taken or not taken. This report
enables you to locate where an error occurred, similar to the analysis of an SVC dump. Once
you locate the error, you can develop a search argument to obtain a fix for the problem.

See Environmental Record Editing and Printing Program (EREP) User's Guide, GC35-01511,
for information about producing a detail edit report for an SDWA-type record. See z/OS MVS
Interactive Problem Control System (IPCS) Commands, SA22-7594, for information about
the VERBEXIT LOGDATA subcommand.
Chapter 6. IPCS dump debugging 175

6.22 Analyzing for resource contention

Figure 6-45 Subcommands to analyze resource contention

Resource contention analysis in dumps
You can obtain information related to resource contention by using the IPCS subcommand
ANALYZE. This subcommand displays contention information for I/O, ENQs, suspend locks,
allocatable devices and real storage.

This command is used to detect resource contention. Specifying GRSQ in the SDATA options
makes the information more reliable. Generally the most useful information is found at the
bottom of this example report, shown in Figure 6-46 on page 177. The top is generally I/O
device contention and isn't usually relevant.

ANALYZE RESOURCE subcommand
The ANALYZE RESOURCE subcommand produces a report that identifies each resource, or
device group, that is experiencing contention. Under each resource, it lists the jobs that hold
the device group and the jobs requiring, or waiting for, the device group. For example, the
resource name in contention in Figure 6-46 on page 177 is:

MAJOR=IGDCDSXS MINOR=SYSD.DFSMS.COMMDS SCOPE=SYSTEMS

Note: Scope=SYSTEMS means multi-system, and scope=SYSTEM means single system.

Resource contention analysis in dumps

Use the IPCS subcommand ANALYZE

Command is used to detect resource contention

ANALYZE RESOURCE subcommand

Report lists the jobs that hold the device group and
the jobs requiring, or waiting for, the device group

ANALYZE RESOURCE XREF subcommand

For each job that holds a device group, the report lists
all other device groups that job holds

For each job waiting for a device group, the report lists
all other device groups that job holds
176 ABCs of z/OS System Programming Volume 8

Figure 6-46 Resource contention data from the IPCS ANALYZE command

ANALYZE RESOURCE XREF subcommand
If you add the XREF keyword to the ANALYZE RESOURCE subcommand, IPCS would add
the following information to the previous report:

� For each job that holds a device group, the report lists all other device groups that job
holds.

� For each job waiting for a device group, the report lists all other device groups that job
holds.

Report using XREF keyword
An example of the output from a report generated using the XREF keyword is shown in
Figure 6-47.

Figure 6-47 ANALYZE RESOURCE XREF report

RESOURCE #0011:
NAME=MAJOR=IGDCDSXS MINOR=SYSD.DFSMS.COMMDS SCOPE=SYSTEMS
RESOURCE #0011 IS HELD BY:
JOBNAME=SMS ASID=0025 TCB=009EB0F0 SYSNAME=CM01
RESOURCE #0011 IS REQUIRED BY:
JOBNAME=SMS ASID=0026 TCB=009EB0F0 SYSNAME=PR02
JOBNAME=SMS ASID=0026 TCB=009EB0F0 SYSNAME=PR03
JOBNAME=SMS ASID=0028 TCB=009EC660 SYSNAME=SP02
JOBNAME=SMS ASID=0027 TCB=009EB0F0 SYSNAME=TS01

Note: Holders of and waiters on resources are identified in the output. ASIDs and
TCBs (where appropriate) are provided and if the scope is SYSTEMS, the
resource is the holding system name.

 CONTENTION REPORT BY RESOURCE NAME

RESOURCE #0001:
 NAME=GROUP record, group = SYSMCS , member = all members

RESOURCE #0001 IS HELD BY:

 JOBNAME=XCFAS ASID=0006 UNKNOWN#00000001=00000000
 DATA=Local lock owner
 Request id = 000131B8
 Request code = 00000002
Chapter 6. IPCS dump debugging 177

6.23 Searching IBM problem databases

Figure 6-48 Providing database search information

IBM database searches
At this point in time we have evaluated some of the available diagnostic data from the dumps.
Look in z/OS MVS Systems Codes, SA22-7626 to find the meaning of an 0F4 abend.
Figure 6-49 shows the explanation from this manual for a 0F4 abend.

Figure 6-49 Documented abend S0F4 Information

Explanation: An error occurred in DFSMSdfp support.
Source: DFSMSdfp
System Action: Prior to the ABEND error occurring, a return code was placed in
the general register 15 and a reason code in general register 0. An SVC dump
has been taken unless the failure is in IGWSPZAP where register 15 contains 10.
The DFSMSdfp recovery routines retry to allow the failing module to return to
its caller. See DFSMS/MVS DFSMSdfp Diagnosis Guide for return code information.
Programmer Response: System error. Rerun the job.
System Programmer Response: If the error recurs and the program is not in
error, search problem reporting data bases for a fix for the problem. If no fix
exists, contact the IBM Support Center. Provide the JCL, the SYSOUT output for
the job, and the logrec data set error record.

IBM database searches

Evaluate available diagnostic data - use abend code

Look in z/OS MVS Systems Codes, SA22-7626

Use search arguments

Abend codes - Messages IDs - Return and reason
codes (RCxx) - Reason codes (RSNxxxx)

Partial dump checks

Possibly key areas of storage is missing

Commmands to determine this
178 ABCs of z/OS System Programming Volume 8

Build search arguments for IBM databases
These are recommended formats to be used when querying the problem database or
reporting problems. These are not the only formats that are used, and some creativity and
imagination can assist with expanding your search. These search arguments are also called
a symptom string. If the problem being diagnosed was already reported and the symptoms
entered in the database, the search will produce a match. Figure 6-50 displays what we know
of the abend details.

Figure 6-50 Abend details

This information can be used to build the IBM problem database search arguments. The
search arguments should use the following formats:

Abend: The format should be ABENDxxx or ABENDSxxx, where xxx is the abend
code.

Messages The format should be MSGxxxxxxx, where xxxxxxx is the message code.

Return and Reason Codes
The format should be RCxx, where xx is the reason or return code. A
reason code alternative is:

Reason Codes The format can be RSNxxxxx, where xxxxx is the reason code.

Partial dump check
A partial or incomplete dump will be missing some key areas of storage that in most cases will
make the dump useless when it comes to efficient problem diagnosis. We should first check
whether the dump is ok. The command shown in Figure 6-51 can provide this information, but
there could be another problem which will not be shown by this command. If the dump has
been transferred via FTP, it could be that not all data has been sent correctly.

Figure 6-51 Partial dump check command

The dump will not be a partial dump if you receive the following information:

LIST E0. BLOCK(0) LENGTH(X'10') AREA
E0. LENGTH(X'10')==>All bytes contain X'00'

If you get a bad return like the one shown below, you need to refer to the z/OS data areas
manual. These codes are mapped by the SDRSN control block.

LIST E0. BLOCK(0) LENGTH(X'10') AREA
BLOCK(0) ADDRESS(E0)
000000E0. 00000000 30000000 00000000 00000000

Note: The 9 volumes of the z/OS MVS System Messages and Systems Codes,
SA22-763x manuals should always be your first reference point for possible causes.

LOAD MODULE NAME: IGWLHHLS - Maintenance level UW04733
 CSECT NAME: IGWLGMOT - Maintenance level UW03389
 SYSTEM ABEND CODE: 00F4
 ABEND REASON CODE: 00000024
 RSN=12088C01

Command ===> l e0. block(0) l(16)
Chapter 6. IPCS dump debugging 179

For this example, you will find:

20000000 - The system detected an error in the SVC dump task and gave recovery
control
10000000 - The SVC dump task failed
180 ABCs of z/OS System Programming Volume 8

Chapter 7. z/OS Language Environment

Language Environment provides a common run-time environment across multiple high level
languages (HLLs). These languages include:

� COBOL

� C/C++

� PL/I

� FORTRAN

� Assembler (not HLL)

Language Environment establishes a common run-time environment for all participating
HLLs. It combines essential run-time services, such as routines for run-time message
handling, condition handling, and storage management. All of these services are available
through a set of interfaces that are consistent across programming languages. You may
either call these interfaces yourself, or use language-specific services that call the interfaces.
With Language Environment, you can use one run-time environment for your applications,
regardless of the application's programming language or system resource needs.

Language Environment consists of:

� Basic routines that support starting and stopping programs, allocating storage,
communicating with programs written in different languages, and indicating and handling
conditions.

� Common library services, such as math services and date and time services, that are
commonly needed by programs running on the system. These functions are supported
through a library of callable services.

� Language-specific portions of the run-time library. Because many language-specific
routines call Language Environment services, behavior is consistent across languages.

7

© Copyright IBM Corp. 2007. All rights reserved. 181

7.1 Language Environment ABEND and CEEDUMP handling

Figure 7-1 Language Environment ABEND and CEEDUMP handling

Run-time environment
A run-time environment provides facilities, such as storage control, system time and date
functions, error processing, message processing and other system functions to the high-level
languages. The run-time library is “called” by the user program to perform these functions.
Before Language Environment, each high-level language had its own run-time library, but
Language Environment has combined the functionality required by each language into a
single run-time environment. Currently, most problems in Language Environment and
member language routines can be determined with the use of a debugging tool or through
information provided in the Language Environment dump.

Language Environment event handler modules
There are two common execution library (CEL) modules that will indicate a failure, but the
cause will be elsewhere. The first is CEEHDSP, which schedules the Language Environment
CEEDUMP to be taken. The second module is CEEPLPKA, which will always indicate an
ABENDU4039 or ABENDU4038 no matter what the original error. Your diagnostic
methodology should exclude failures in these two modules.

� The Language Environment event handler modules are identified as CEEExxx where xxx
represents the language, as follows:
003 C/C++ Run-time (that is, CEEEV003)
005 COBOL
007 FORTRAN
008 DCE

LE
CEEDump

LE event handler modules
CEE3DMP
Debug Tool

ITSO.DUMP.DATA
SYS1.DUMP00
CEEDUMP
182 ABCs of z/OS System Programming Volume 8

010 PL/I
012 Debug Tool

CEE3DMP
For non-64-bit, the CEE3DMP callable service generates a dump of the run-time environment
for Language Environment and the member language libraries at the point of the CEE3DMP
call. You can call CEE3DMP directly from an application routine.

Depending on the CEE3DMP options you specify, the dump can contain information about
conditions, tracebacks, variables, control blocks, stack and heap storage, file status and
attributes, and language-specific information.

All output from CEE3DMP is written to the default ddname CEEDUMP. CEEDUMP, by
default, sends the output to the SDSF output queue. You can direct the output from the
CEEDUMP to a specific SYSOUT class by using the environment variable,
_CEE_DMPTARG=SYSOUT(x), where x is the output class.

Debug Tool
Debug tools are designed to help you detect errors early in your routine. IBM offers Debug
Tool, a comprehensive compile, edit, and debug product that is provided with the C/C++,
Enterprise COBOL for z/OS, COBOL for OS/390 and VM, COBOL for MVS and VM, PL/I for
MVS and VM, VisualAge® PL/I, and VisualAge for Java™ compiler products.

You can use the IBM Debug Tool to examine, monitor, and control how your routines run, and
debug your routines interactively or in batch mode. Debug Tool also provides facilities for
setting breakpoints and altering the contents and values of variables. Language Environment
run-time options can be used with Debug Tool to debug or analyze your routine. Refer to the
Debug Tool publications for a detailed explanation of how to invoke and run Debug Tool.
Chapter 7. z/OS Language Environment 183

7.2 Common Language Environment messages

Figure 7-2 Debugging with run-time messages

Debugging with run-time messages
Run-time messages provide users with additional information about a condition, and possible
solutions for any errors that occurred. They can be issued by Language Environment
common routines or language-specific run-time routines and contain a message prefix,
message number, severity code, and descriptive text.

The first step in debugging your routine is to look up any run-time messages. To find run-time
messages, check the message file:

� On z/OS, run-time messages are written by default to ddname SYSOUT. If SYSOUT is
not specified, then the messages are written to SYSOUT=*.

� On CICS, the run-time messages are written to the CESE transient data QUEUE.

Message content
In the following sample Language Environment message, the content is as follows:

CEE3206S The system detected a specification exception.

� The message prefix is CEE.

� The message number is 3206.

� The severity code is S.

� The message text is “The system detected a specification exception.”

Run-time messages provide users with:

Information about a condition

Possible solutions for any errors that occurred

Issued by Language Environment:

Common routines

Language-specific run-time routines

Message content:

Message prefix

Message number

Severity code

Descriptive text
184 ABCs of z/OS System Programming Volume 8

7.3 Language Environment message abend prefixes

Figure 7-3 Understanding message prefixes and condition codes

Language Environment message abend prefixes
The message prefix indicates the Language Environment component that generated the
message. The message prefix is the first three characters of the message number and is also
the facility ID in the condition token. The following messages and abend prefixes can assist
with problem diagnosis:

CEE Is output by common execution library (CEL) modules, but may be reporting a
problem elsewhere

IGZ Is output by COBOL

IBM Is output by PL/I

AFH Is output by FORTRAN

EDC Is output by C/C++

Some common CEL messages that indicate exception (0Cx) conditions are:

� CEE3201 = ABEND0C1

� CEE3204 = ABEND0C4

� CEE32xx = ABEND0Cy, where y is the hex equivalent of decimal xx

Message CEE3250 indicates a non-exception (0Cx) abend has occurred.

Common LE messages and abends

LE prefixes for messages

Common CEL messages for 0Cx conditions

Common CEL abends

Condition codes
Chapter 7. z/OS Language Environment 185

Common CEL abends
U4038 Some “severe” error occurred but no dump was requested.

U4039 Some “severe” error occurred and a dump was requested.

U4083* Backchain in error - only occurs after some other error.

U4087* Error during error processing.

U4093* Error during initialization.

U4094* Error during termination.

The * indicates that a reason code is required for this message to be meaningful.

Condition code token example
The following condition code example should show how to get the meaning of this
information:

00030C84 59C3C5C5 xxxxxxxx

The condition code beaks down in the following way:

0003 | 0C84 | 59 | C3C5C5 | xxxxxxxx

0003 indicates severity and the other possibilities are:

0000 Informational (I)

0001 Warning (W)

0002 Error (E)

0003 Severe (S)

0004 Critical (C)

The other fields are as follows:

0C84 Hex message number (3204)

59 Flags (ignore)

C3C5C5 Facility ID (message prefix)

xxxxxxxx Instance specific information (internal use)

This token represents message CEE3204S.
186 ABCs of z/OS System Programming Volume 8

7.4 Collecting debug documentation

Figure 7-4 Specifying information for debugging

Specifications to obtain debug documentation
There are several run-time options that affect debugging in Language Environment. The
TEST run-time option, for example, can be used with a debugging tool to specify the level of
control the debugging tool has when the routine being initialized is started, as follows:

� The ABPERC, CHECK, DEPTHCONDLMT, ERRCOUNT, HEAPCHK, INTERRUPT,
TERMTHDACT, TRACE, TRAP, and USRHDLR options affect condition handling.

� The ABTERMENC option affects how an application ends (that is, with an abend or with a
return code and reason code) when an unhandled condition of severity 2 or greater
occurs.

Language Environment and batch methods for collecting dumps
Using the following methods, are ways to specify how to collect dumps in the event of an error
or ABEND condition:

� Specify the following run-time options:

ABTERMENC(ABEND) TERMTHDACT(UADUMP) TRAP(ON)

For information about how to specify run-time options, refer to the section “Specifying
Runtime Options under z/OS Batch” in z/OS XL C/C++ User's Guide, SC09-4767.

� Include a SYSMDUMP DD card in the JCL by specifying the following parameters:

SPACE=(CYL,(100,100),RLSE),DISP=(NEW,DELETE,CATLG),
DSN=dump_dataset_name,LRECL=4160,RECFM=FBS

Specify run-time options

ABTERMENC(ABEND) TERMTHDACT(UADUMP) TRAP(ON)

Include a SYSMDUMP DD statement in the JCL

SPACE=(CYL,(100,100),RLSE),DISP=(NEW,DELETE,CATLG),

DSN=dump_dataset_name,LRECL=4160,RECFM=FBS

SDATA statement in the IEADMR00 parmlib member
Chapter 7. z/OS Language Environment 187

� IEADMR00 parmlib member

IEADMR00 contains IBM defaults or installation parameters for ABDUMP, for use when
an ABEND dump is written to a SYSMDUMP data set.

The system writes a SYSMDUMP as the core dump of a forked address space that runs a
z/OS UNIX process. A core dump is written to an HFS file on behalf of the user
experiencing the error. To obtain sufficient diagnostic data without consuming excessive
storage in the file system, request the following options in IEADMR00:

SDATA=(RGN,TRT,SUM)

See z/OS MVS Initialization and Tuning Reference, SA22-7592 for information about the
IEADMR00 parmlib member and the SDATA parameter.

Note: Ensure that your IEADMR00 parmlib member reflects the following SDATA
defaults:

 SDATA=(NUC,SQA,LSQA,RGN,TRT,LPA,CSA,GRSQ,SUM)
188 ABCs of z/OS System Programming Volume 8

7.5 Language Environment and CICS debugging

Figure 7-5 Debugging with Language Environment and CICS

Debugging under CICS
Under CICS, the Language Environment run-time messages, Language Environment
traceback, and Language Environment dump output are written to the CESE transient data
queue. The transaction identifier, terminal identifier, date, and time precede the data in the
queue. The CESE transient data queue is defined in the CICS destination control table
(DCT). The CICS macro DFHDCT is used to define entries in the DCT.

Under CICS, Language Environment run-time messages are written to the CESE transient
data queue. A sample Language Environment message that appears when an application
abends due to an unhandled condition from an EXEC CICS command is:

P039UTV9 19910916145313 CEE3250C The System or User ABEND AEI0 was issued.
P039UTV9 19910916145313 From program unit UT9CVERI at entry point
 +0000011E at P039UTV9 19910916145313
 at offset address 0006051E.

CICS system dump
Under CICS, a system dump provides the most useful information for diagnosing problems.
However, if you have a Language Environment U4038 abend, CICS will not generate a
system dump. In order to generate diagnostic information for a CICS run-time environment
with a language Environment U4038 abend, you must create a Language Environment
U4039 abend.

CESE transient data queue

Messages are written to this data queue

CICS system dump

Dump is useful for diagnosing problems

Generate a U4039 ABEND by either:

CEMT SET TRD(4039) SYS ADD - (command)

TERMTHDACT(UADUMP) ABTERMENC(ABEND)
TRAP(ON) - (Run-time options)

Procedure for 40xx dumps with CICS
Chapter 7. z/OS Language Environment 189

Perform the following steps to generate a system dump in a CICS run-time environment:

� Specify run-time options TERMTHDACT(UAONLY, UADUMP, or UATRACE),
ABTERM(ABEND), and TRAP(ON). The TERMTHDACT suboption determines the level
of detail of the Language Environment formatted dump.

TERMTHDACT(UADUMP) ABTERMENC(ABEND) TRAP(ON) produces a CICS
transaction dump. It will never produce a SYSUDUMP/SYSABEND/SYSMDUMP since
Language Environment's ESTAE routine does not get driven. Information APAR II13228
explains how to find the PSW and GPRs at the time of failure.

� In a CICS environment, you automatically receive the default transaction dump unless you
disable it by using the CEMT transaction, and by specifying the dump code '4039'. Update
the transaction dump table with the CICS supplied CEMT command:

CEMT SET TRD(4039) SYS ADD

A transaction dump should be produced for all Language Environment ABENDU40xx
series abends, except ABENDU4038. If a transaction dump is not enough, request a CICS
system dump.

This produces a CICS transaction dump with an ABENDU4039.

Procedure for an SVC dump for 40xx abends under CICS
Here are the steps to get an SDUMP for a specific 40xx transaction abend under CICS:

1. Make sure the CICS region is started with the DUMP=YES SYSIN input (SIP) parameter.

2. Make sure the SYS1.DUMP- data sets are available. Most customers should have all this
already set up.

As an alternative, the dynamic allocation facility may be used, as follows:

DUMPDS ALLOC ADD,VOL=xxxxxx
DUMPDS ALLOC=ACTIVE

After these commands, MVS dynamically allocates data sets on the xxxxxx volume
containing the dump with the following type of name:

SYS1.DUMP.D970910.T191701.SY1.S00001

3. Once the CICS region is up, log on and issue the following:

CEMT SET TRD(40xx) ADD SYS

Substituting the real dump code, for example: 4088 for 40xx. Following is a sample of
what CICS sends back for this:

SET TRD(4088) ADD SYS
STATUS: RESULTS - OVERTYPE TO MODIFY
Trd(4088) Tra Sys Loc Max(999) Cur(0000)

4. Now run the transaction that creates the U40xx abend. A system, or SVC dump, should be
produced at the point of the abend. This procedure will work for any transaction dump
under CICS, not just U40xx abends.

Note: A CICS system dump of an ABENDU4038 is not helpful because it is taken at the
time of the last termination, not at the point of detection. Instead, specify the following:

TERMTHDACT(UADUMP) ABTERMENC(ABEND) TRAP(ON)

Note: SLIP commands on C=U40xx will not work in CICS. SLIP commands on C=0Cx
will work in a CICS environment but not in batch.
190 ABCs of z/OS System Programming Volume 8

7.6 Language Environment and UNIX System Services dumps

Figure 7-6 Taking dumps for z/OS UNIX processes

Dumps with UNIX System Services
You can dynamically request a SYSMDUMP by using the SIGDUMP signal. Use the
_BPXK_MDUMP environment variable to specify where the SYSMDUMP is to be written to.
You can also use F BPXOINIT,DUMP=pid to request a SYSMDUMP. A SIGDUMP signal is
then sent to the specified process. For both the SIGDUMP signal and the F BPXOINIT,DUMP
command, the _BPXK_MDUMP environment variable must be set to an MVS data set name.
If it is set to a UNIX file name or defaulted to OFF, then both the SIGDUMP signal and the
F BPXOINIT,DUMP command may be ignored.

If you have a loop, hang, or wait condition in a z/OS UNIX process and need a dump or
diagnosis, you need to dump several types of data:

� The kernel address space

� Any kernel data spaces that may be associated with the problem

� Any process address spaces that may be associated with the problem

� Appropriate storage areas containing system control blocks (for example, SQA, CSA,
RGN, TRT)

Language Environment run-time options
Using UNIX System Services and the Language Environment run-time options. Consider the
following steps to take system dumps:

SYSMDUMP for z/OS UNIX processes

Set environment variable for where dump is written

_BPXK_MDUMP=filename

LE run-time options for z/OS UNIX

export _CEE_RUNOPTS="termthdact(suboption)"

Steps to take system dumps

Specify where to write the dump

Specify the run-time options

Rerun the failing program to take the dump
Chapter 7. z/OS Language Environment 191

1. To write the system dump to a data set, issue the command:

export _BPXK_MDUMP=filename

where filename is a fully qualified data set name with LRECL=4160 and RECFM=FBS, or
where filename is a fully qualified HFS filename.

2. Specify Language Environment run-time options:

export _CEE_RUNOPTS="termthdact(suboption)"

where suboption = UAONLY, UADUMP, UATRACE, or UAIMM. If UAIMM is set,
TRAP(ON,NOSPIE) must also be set. The TERMTHDACT suboption determines the level
of detail of the Language Environment formatted dump. For

3. Rerun the program and the dump will be written to the specified data set.
192 ABCs of z/OS System Programming Volume 8

7.7 Understanding CEEDUMP

Figure 7-7 Using CEEDUMP

Additional hints to collect error information
All output from CEE3DMP, the callable service that generates a dump of the run-time
environment for Language Environment, is written to the default ddname CEEDUMP.
CEEDUMP, by default, sends the output to the JES output queue.

The IBM-supplied default settings for CEE3DMP are:

ENCLAVE(ALL) TRACEBACK
THREAD(CURRENT) FI S VARIABLES NOBLOCKS NOSTORAGE
STACKFRAME(ALL) PAGESIZE(60) FNAME(CEEDUMP)
CONDITION ENTRY NOGENOPTS REGSTOR(96)

Batch JCL example
For batch, use a CEEDUMP DD card to route the dump to a specific SYSOUT or data set. If
not specified, it will be dynamically allocated to SYSOUT=* by default.

In the following JCL example, The ddname of the dump output file can be CEEDUMP. If you
do not define this ddname, Language Environment creates a default CEEDUMP file to
contain the dump output. The LRECL of the dump output file must be at least 133 bytes to
prevent dump records from wrapping. If you write the dump output to the SYSOUT file, make
sure you change the default LRECL size of 121 to 133 to prevent from wrapping.

CEE3DMP callable service

Writes dumps to default DDname CEEDUMP

Dump output goes to JES spool

Batch job JCL example

//CEEDUMP DD SYSOUT=*

z/OS UNIX and CEEDUMP
Chapter 7. z/OS Language Environment 193

z/OS UNIX and CEEDUMP
If your application is running under z/OS UNIX and is either running in an address space you
issued a fork() to, or is invoked by one of the exec family of functions, the dump is written to
the hierarchical file system (HFS). Language Environment writes the CEEDUMP to one of the
following directories in the specified order:

� The directory found in environment variable _CEE_DMPTARG, if found

� The current working directory, if the directory is not the root directory (/), and the directory
is writable

� The directory found in environment variable TMPDIR (an environment variable that
indicates the location of a temporary directory if it is not /tmp)

� The /tmp directory

Examining dumps
In most cases Language Environment condition handling will trap original program checks
(like ABEND0C4) and turn them into corresponding Language Environment conditions (like
CEE3204S). After storing information about the original program check, Language
Environment will terminate with an ABENDU40xx. When examining a dump of a U40xx the
PSW and registers can be found in a control block called the ZMCH. APAR II11016 is
specifically written for those running Language Environment in a non-CICS environment, as
the control block structure and condition handling changes when running under CICS.
Depending on how the dump was produced it might be a formatted or unformatted one. The
formatted one can be browsed. The unformatted one needs to be accessed by IPCS.

Figure 7-8 shows an ABEND0C9 problem. The dump is a formatted one. These dumps are
mostly useful for the program owner. Let us start with the joblog information:

//SYSLOGD PROC
//SYSLOGD EXEC PGM=SYSLOGD,REGION=30M,TIME=NOLIMIT
// PARM='POSIX(ON) ALL31(ON)/ -f /etc/syslogd.conf'
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//SYSOUT DD SYSOUT=*
//SYSERR DD SYSOUT=*
//CEEDUMP DD SYSOUT=*

Note: You can change the default SYSOUT class by specifying a CEEDUMP DD, or by
setting the environment variable, _CEE_DMPTARG=SYSOUT(x), where x is the preferred
SYSOUT class.
194 ABCs of z/OS System Programming Volume 8

Figure 7-8 Joblog information

You should also get a program-related output (Figure 7-9).

Figure 7-9 Program output

IEA995I SYMPTOM DUMP OUTPUT
 USER COMPLETION CODE=4039 REASON CODE=00000000 TIME=21.45.36 SEQ=03447
CPU=0000 ASID=0153
 PSW AT TIME OF ERROR 078D1000 A3E207B0 ILC 2 INTC 0D
 ACTIVE LOAD MODULE ADDRESS=23E19D30 OFFSET=00006A80
 NAME=CEEPLPKA
 DATA AT PSW 23E207AA - 00181610 0A0D58D0 D00498EC
 GPR 0-3 84000000 84000FC7 00024478 23E207B0
 GPR 4-7 23E178A0 00000000 00024478 00025017
 GPR 8-11 23E238A5 23E228A6 000243D0 A3E206E0
 GPR 12-15 00015910 00026180 A3E22F1E 00000000
 END OF SYMPTOM DUMP
IEA993I SYSMDUMP TAKEN TO JMONTI.LECOBED1.SYSMDUMP
IEF450I JMONTI@B GO - ABEND=S0C9 U0000 REASON=00000009

CEE3209S The system detected a fixed-point divide exception.
From compile unit COBOLED2 at entry point COBOLED2 at statement 13
at compile unit offset +00000308 at address 23E029E0.
Chapter 7. z/OS Language Environment 195

7.8 ZMCH control block

Figure 7-10 Display of the ZMCH control block

IPCS VERBEXIT LEDATA
The Language Environment IPCS VERBEXIT LEDATA generates formatted output of the
Language Environment run-time environment control blocks from a system dump. The
LEDATA VERBEXIT is invoked with the ALL parameter. The system dump being formatted
was obtained by specifying the TERMTHDACT(UADUMP) run-time option.

ZMCH (machine state information at time of exception)
The ZMCH control block, shown in Figure 7-10, shows the information at the time of the error.
It includes PSW and the registers. Right at the beginning is the ZMCH eye catcher

Traceback information
Traceback information as shown in Figure 7-11 provides a module flow from involved
modules. The traceback output is read from bottom to top.

Machine State
+000348 MCH_EYE:ZMCH
+000350 MCH_GPR00:00026180 MCH_GPR01:00000000
+000358 MCH_GPR02:00000000 MCH_GPR03:0000000A
+000360 MCH_GPR04:00000000 MCH_GPR05:00046038
+000368 MCH_GPR06:00000000 MCH_GPR07:00FCCBF0
+000370 MCH_GPR08:23F1B100 MCH_GPR09:23F17700
+000378 MCH_GPR10:23E027E0 MCH_GPR11:23E028B0
+000380 MCH_GPR12:23E027D4 MCH_GPR13:000260C8
+000388 MCH_GPR14:A3E029D4 MCH_GPR15:A3E02916
+000390 MCH_PSW:078D2000 A3E029E2 MCH_ILC:0002 MCH_IC1:00
+00039B MCH_IC2:09 MCH_PFT:00000000 MCH_FLT_0:00000000 00000000
+0003A8 MCH_FLT_2:00000000 00000000 MCH_FLT_4:00000000 00000000
+0003B8 MCH_FLT_6:00000000 00000000 MCH_EXT:00000000
+000418 MCH_FLT_1:00000000 00000000 MCH_FLT_3:00000000 00000000
+000428 MCH_FLT_5:00000000 00000000 MCH_FLT_7:00000000 00000000
+000438 MCH_FLT_8:00000000 00000000 MCH_FLT_9:00000000 00000000
196 ABCs of z/OS System Programming Volume 8

Figure 7-11 Traceback information

Condition information
The condition information is provided by the condition information block (CIB) address. Reg
13 points to DSA (save area) and register 12 points to CAA (common anchor area). The CIB
also provides the storage area where we can see the instruction flow getting the error.

Figure 7-12 Condition information

The PSW at the time of the error points to instruction 1D24, which is a DR (divide register).
Looking at the register value you see that GPR4 is 00000000. This leads to our ABEND0C9.

The dump will show the CAA (common anchor area) control block pointed to by register 12
(GPR12) followed by the process control block (PCB), the region control block (RCB), and the
enclaved data block (EDB). It shows that you can find the run-time options (runopts) in the
formatted dump.

CEE3DMP V2 R10.0: Condition processing resulted in the unhandled condition.
 02/26/01 9:48:42 PM

Information for enclave COBOLED1

Information for thread 8000000000000000

Traceback:
DSA Addr PU Addr PU Offset Entry Stmt Load Mod Service Status
00024018 23E208A8 +000026A6 CEEHDSP CEEPLPKA UQ24548 Call
000260C8 23E026D8 +00000308 COBOLED2 13 COBOL1 Exception
00026018 23E00978 +0000033E COBOLED1 14 COBOL1 Call

Condition Information for Active Routines
Condition Information for COBOLED2 (DSA address 000260C8)
CIB Address: 00024478
Current Condition:
CEE0198S The termination of a thread was signaled due to an unhandled
condition.
Original Condition:
CEE3209S The system detected a fixed-point divide exception.
Location:
Program Unit: COBOLED2 Entry: COBOLED2 Statement: 13 Offset: +00000308
Machine State:
 ILC..... 0002 Interruption Code..... 0009
 PSW..... 078D2000 A3E029E2
 GPR0..... 00026180 GPR1..... 00000000 GPR2..... 00000000 GPR3..... 0000000A
 GPR4..... 00000000 GPR5..... 00046038 GPR6..... 00000000 GPR7..... 00FCCBF0
 GPR8..... 23F1B100 GPR9..... 23F17700 GPR10.... 23E027E0 GPR11.... 23E028B0
 GPR12.... 23E027D4 GPR13.... 000260C8 GPR14.... A3E029D4 GPR15.... A3E02916
Storage dump near condition, beginning at location: 23E029D0
+000000 23E029D0 45E0913A 48208000 8E200020 48408002 1D244030 800445E0
913A9140
Chapter 7. z/OS Language Environment 197

7.9 IPCS and Language Environment

Figure 7-13 IPCS commands to diagnose an Language Environment dump

IPCS Language Environment problem diagnosis
All the information you can find in a formatted Language Environment dump can also be
found in the SVC dump. IPCS provides some facilities to assist with Language Environment
problem diagnosis. The IPCS commands VERBX LEDATA and VERBX CEEERRIP show the
Language Environment run-time options and general information about your Language
Environment environment at the time of the failure.

CEEERRIP
CEEERRIP is the Language Environment diagnostic module that is used to format the dump
data. Figure 7-11 on page 197 shows the result of the VERBX CEEERRIP 'CEEDUMP'
command and related traceback information.

LEDATA
LEDATA searches for an error TCB and formats the control blocks for that TCB. If there is no
error TCB (shown in a console dump) the TCB or CAA keywords will need to be specified as
follows:

1. Load SYSMDUMP into IPCS (instructions on how to get a SYSMDUMP with Language
Environment can be found in info APAR II10573).

2. Issue the command:

IP SUMM FORMAT

IPCS LE problem diagnosis

Display LE run-time options

VERBX CEERRIP - format the dump data

VERBX LEDATA - search for error TCB

If no error TCB found

Load SYSMDUMP into IPCS

Issue IP SUMM FORMAT command

Issue BOTTOM or MAX (PF8) command

Find the TCB

Issue IP VERBX LEDATA 'CM TCB(xxxxxxxx)'

Should now see ZMCH
198 ABCs of z/OS System Programming Volume 8

3. Issue the command:

BOTTOM or MAX (PF8)

4. Find the TCB with a non-zero completion code. Now issue the command:

IP VERBX LEDATA 'CM TCB(xxxxxxxx)'

Continue dump analysis if no ZMCH
If this does not format the ZMCH, locate the CAA with the following steps:

1. Issue the following command, where xxxxxxxx represents the address of the failing TCB:

F 'TCB: xxxxxxxx' PREV

2. Issue the command:

F RTM2WA

3. Press PF5 to search again. If there is a second RTM2WA for the failing TCB, then use the
data contained in the RTM2WA.

4. Find the address in Register 12.

5. Issue the command “=1” to go into browse mode. Or select Option 1 from the IPCS
Primary Option menu.

6. Issue the command L yyyyyyyy, where yyyyyyyy represents the address obtained from
Register 12.

7. Now verify whether this is a valid CAA with the following:

a. At the address in R12 verify that the value is “xxxx0800”.

b. Issue L X-18 and the eyecatcher should be CEECAA.

This indicates we have found a valid CAA and can now issue the command:

IP VERBX LEDATA 'CM CAA(yyyyyyyy)'

You have now formatted the ZMCH, so you can begin locating the values you were looking
for.

Commands for additional dump information
The following IPCS VERBX commands can provide useful information from the dump:

VERBX CEEERRIP 'SUMMARY' Like formatted dump
VERBX CEEERRIP 'CEEDUMP' Traceback
VERBX CEEERRIP 'CM' Condition Information
VERBX CEEERRIP 'NTHREADS(*)' Traceback for each Language Environment-enabled
TCB

Note: The above steps do not pertain to an ABENDU4036 dump.
Chapter 7. z/OS Language Environment 199

200 ABCs of z/OS System Programming Volume 8

Chapter 8. Debug and maintenance tools

Debugging a dump does not always provide all necessary information. Sometimes you can
locate a module name but cannot determine its maintenance level.

This chapter describes System Modification Program Extended (SMP/E) as the basic tool for
installing and maintaining software in OS/390 or z/OS systems and subsystems. It controls
the changes at the element level by:

� Selecting the proper levels of elements to be installed from a large number of potential
changes

� Calling system utility programs to install the changes

� Keeping records of the installed changes

In other cases you may find a load module name (LMOD) but cannot find the CSECT or
member name. AMBLIST is a utility that provides the internal CSECTs of a load module. In
addition you can list the object code.

This chapter describes some of the diagnostic aids that can be used via members in
SYS1.PARMLIB. These facilities enable you to simplify the diagnostic data collection process
by enabling you to prepare data collection parameters in advance to ensure that complex
dump procedures do not have to be typed in when a problem arises and prompt, error free
action is required. The SYS1.PARMLIB members that can simplify the diagnostic data
collection process include:

� IEAABD00

� IEADMP00

� IEADMR00

� IEADMCxx

� IEASLPxx

8

© Copyright IBM Corp. 2007. All rights reserved. 201

8.1 Using SMP/E

Figure 8-1 Using SMP/E

Using SMP/E
SMP/E is a tool designed to manage the installation of software products on your z/OS
system and to track the modifications you make to those products. Usually, it is the system
programmer's responsibility to ensure that all software products and their modifications are
properly installed on the system. The system programmer also has to ensure that all products
are installed at the proper level so all elements of the system can work together. At first, that
might not sound too difficult, but as the complexity of the software configuration increases, so
does the task of monitoring all the elements of the system

To get a module level using SMP/E you should select the SMP/E PRIMARY OPTION MENU.
It is shown in Figure 8-2.

SMP/E
QUERY

SMP.GLOBAL.CSI
202 ABCs of z/OS System Programming Volume 8

Figure 8-2 Get the module level and load module information

Enter the SMPCSI data set name and select Option 3 Query, as shown in Figure 8-2.

Figure 8-3 Get the module level and load module information

Now select 2 Cross-Zone Query as shown in Figure 8-3.

 ---------------------- SMP/E PRIMARY OPTION MENU ---------------- SMP/E 34.10
 ===> 3

 0 SETTINGS - Configure settings for the SMP/E dialogs
 1 ADMINISTRATION - Administer the SMPCSI contents
 2 SYSMOD MANAGEMENT - Receive SYSMODs and HOLDDATA
 and install SYSMODs
 3 QUERY - Display SMPCSI information
 4 COMMAND GENERATION - Generate SMP/E commands
 5 RECEIVE - Receive SYSMODs, HOLDDATA and
 support information
 6 MIGRATION ASSISTANT- Generate Planning and Migration Reports
 7 ORDER MANAGEMENT - Manage ORDER entries in the global zone

 D DESCRIBE - An overview of the dialogs
 T TUTORIAL - Details on using the dialogs
 W WHAT IS NEW - What is New in SMP/E

 Specify the name of the CSI that contains the global zone:
 SMPCSI DATA SET ===> 'ZOSR17.GLOBAL.CSI'
 (Leave blank for a list of SMPCSI data set names.)

 Specify YES to have DD statements for SYSOUT and temporary
 data sets generated. Specify NO, to use DDDEFs.
 Generate DD statements ===> NO

 Licensed Materials - Property of IBM
 5694-A01 5655-G44
 (C) Copyright IBM Corp. 1982, 2005

 QUERY SELECTION MENU
 ===> 2

 1 CSI QUERY - Display SMPCSI entries
 2 CROSS-ZONE QUERY - Display status of an entry in
 all zones
 3 SOURCEID QUERY - Display SOURCEIDs for specified zone

 D DESCRIBE - Overview of using QUERY

 T TUTORIAL - Information on using QUERY

 To return to the SMP/E primary option menu, enter END .
Chapter 8. Debug and maintenance tools 203

8.2 Find a load module

Figure 8-4 Steps to find a load module

Find a load module
From the QUERY SELCTION MENU, Option 2 displays the panel shown in Figure 8-5.

Figure 8-5 Get module level and load module information

Enter the entry type you would like to get information from. In our case, MOD (module), and
then add the module name, ATRFMQUR, as shown in Figure 8-5. Then press Enter and you
should get the panel shown in Figure 8-6.

 CROSS-ZONE QUERY
 ===>

 Specify the entry type and name to be queried:

 ENTRY TYPE ===> MOD Entry type to be queried.
 To display a selection list of all valid entry
 types, leave ENTRY TYPE and ENTRY NAME
 blank

 ENTRY NAME ===> ATRFMQUR Entry name to be queried.

 To return to the Query selection menu enter the END command

Select the CROSS-ZONE QUERY

Enter the module name

Entry type is MOD

From the ENTRY Selection panel

Place an S next to the target zone module

From the CSI QUERY - MOD ENTRY panel

Load module information
204 ABCs of z/OS System Programming Volume 8

Figure 8-6 Get the module level and load module information

To get load module-related information select the target zone, in our case MVSD700, place
an S as shown in Figure 8-6, and press Enter.

Figure 8-7 Get module level and load module information

 CSI CROSS-ZONE QUERY - ENTRY SELECTION Row 2 to 17 of 19
 ===> SCROLL ===> PAGE

 Entry Type: MOD
 Entry Name: ATRFMQUR

 To return to the previous panel, enter END .

 To select an entry from a zone, enter S next to the zone.

 * - Entry not found in zone.
 ** - Zone could not be allocated or is not initialized.

 -------------------- Status -----------------------------------
 ZONE FMID RMID LASTUPD DISTLIB UMID(S)
 -------- -------- -------- -------- -------- -------- -------- --------
 S MVSD700 HBB7720 UA24095 HBB7720 AOSC5
 MVSD710 *
 MVSD711 *
 MVSTA00 HBB7720 UA27072 HBB7720 AOSC5
 MVSTA10 *
 MVSTA11 *

 CSI QUERY - MOD ENTRY Row 1 to 2 of 2
 ===> SCROLL ===> PAGE

 To return to the previous panel, enter END .

 Primary Command: FIND

 Entry Type: MOD Zone Name: MVSD700
 Entry Name: ATRFMQUR Zone Type: DLIB

 FMID: HBB7720 LASTUPD: HBB7720 TYPE=ADD
 RMID: UA24095 DISTLIB: AOSC5

 Link-edit Parameters:
 RENT,REFR,OL,NCAL

 -------- -------- -------- -------- -------- -------- --------
 LMOD ATRAMPVX
 CSECTS ATRFMQUR
 ******************************* Bottom of data

Chapter 8. Debug and maintenance tools 205

If you would like to check whether a PTF is installed, the Entry Type should be SYSMOD. Use
Entry Type LMOD to look for load module information.
206 ABCs of z/OS System Programming Volume 8

8.3 AMBLIST job to get LMOD and source information

Figure 8-8 AMBLIST to get load module CSECTs and source listed

Using AMBLIST
AMBLIST is a very powerful utility that is easy to handle. It provides useful debug and
diagnosis information. Use AMBLIST when you need information about the content of load
modules and program objects or when you have a problem related to the modules on your
system. AMBLIST is a program that provides lots of data about modules in the system, such
as a listing of the load modules, map of the CSECTs in a load module or program object, list
of modifications in a CSECT, map of modules in the LPA, and a map of the contents of the
DAT-on (dynamic address translation) nucleus.

If you are analyzing a dump, for example, and can only get the load module name and not
any CSECT name, you can use the AMBLIST JCL to get CSECT and, if necessary, source
information. You need to know in which SYSLIB data set the load module resides. The
following JCL shows an AMBLIST request for load Unix System Service module BPXINPVT,
which should be in the SYS1.LINKLIB data set.

Obtaining AMBLIST output
To obtain AMBLIST output, you must code JCL, providing control statements as input to the
job. These control statements dictate what type of information AMBLIST produces, as shown
in Figure 8-9 on page 208. A snapshot of the output is shown in Figure 8-10 on page 208.

HILG.JOB.CNTL
AMBLIST

SYS1.CMDLIB
CEE.SCEELPA
CEE.SCEERUN
SYS1.SCEELKED
SYS1.LINKLIB
SYS1.LPALIB
TCPIP.SEZALINKR
SYS1.MIGLIB

EXEC
PGM=AMBLIST
Chapter 8. Debug and maintenance tools 207

Figure 8-9 AMBLIST JCL job

Figure 8-10 AMBLIST output

LISTLOAD control statement
Use the LISTLOAD control statement to obtain a listing of load module or program objects;
see Figure 8-11 on page 209. The listed data can help you verify why certain link-edit errors
might have occurred.

//HILGAA JOB 7904,HILGER,MSGLEVEL=(1,1),MSGCLASS=K,CLASS=A,
// NOTIFY=HILG3
//AMBLIST EXEC PGM=AMBLIST,REGION=0M
//*YSLIB DD DSN=SYS1.CMDLIB,DISP=SHR
//*YSLIB DD DSN=CEE.SCEELPA,DISP=SHR
//*YSLIB DD DSN=CEE.SCEERUN,DISP=SHR
//*YSLIB DD DSN=IOE.SIOELMOD,DISP=SHR
//*YSLIB DD DSN=SYS1.SCEELKED,DISP=SHR
//SYSLIB DD DSN=SYS1.LINKLIB,DISP=SHR
//*YSLIB DD DSN=SYS1.LOTUS.LPALIB,DISP=SHR
//*YSLIB DD DSN=SYS1.LPALIB,DISP=SHR
//*YSLIB DD DSN=TCPIP.SEZALINK,DISP=SHR
//*YSLIB DD DSN=SYS1.MIGLIB,DISP=SHR
//*YSLIB DD DSN=ISP.V4R4M0.SISPLPA,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 LISTLOAD MEMBER=(BPXINPVT),OUTPUT=XREF

MEMBER NAME: BPXINPVT
LIBRARY: SYSLIB
 ** ALIASES ** ENTRY POINT AMODE
 BPXBDMI 001E80F8 31
 BPXBDSI 001F1EF0 31
 BPXFCSIN 002110E8 31
 BPXFDNIN 002128F0 31
 BPXFPINT 00214BE8 31
 BPXFSLIT 00172228 31
 BPXFSLM 00153E90 31
 BPXFTCLN 00016858 31

CONTROL SECTION
 LMOD LOC NAME LENGTH TYPE
 00 BPXINPVT 3728 SD
 3728 BPXTAVNO 4BD8 SD
 8300 BPXPTCRE 25C8 SD
 A8C8 P8CRECPY 6E SD
 A938 P8CRERET 52 SD
 A990 BPXNXFST 4460 SD
208 ABCs of z/OS System Programming Volume 8

Figure 8-11 LISTLOAD control statement to obtain a listing of load module or program objects

LISTLOAD
[OUTPUT={MODLIST|XREF|BOTH}]
[,TITLE=('title',position)]
[,DDN=ddname]
[,MEMBER={member|(member1,membern...)}]
[,RELOC=hhhhhhhh]
[,ADATA={YES|NO}]
Chapter 8. Debug and maintenance tools 209

8.4 IEAABD00, IEADMP00 and IEADMR00 members

Figure 8-12 SYS1.PARMLIB members for abend dumps

Parmlib members for abend dumps
IEAABD00 contains IBM defaults and/or installation-assigned parameters for ABDUMP, for
use when an abend dump is written to a SYSABEND data set.

IEADMP00 contains IBM defaults and installation parameters for ABDUMP for use when an
abend dump is written to a SYSUDUMP data set.

IEADMR00 contains IBM defaults and installation parameters for ABDUMP for use when an
abend dump is written to a SYSMDUMP data set.

These members contain the SDATA and PDATA options that will be used when an abend
dump is triggered.

SDATA options
Following are the SDATA options:

ALLSDATA All the following options are automatically specified (except ALLVNUC and
NOSYM).

The following parameters request dump of specific SDATA areas, as
indicated:

ALLVNUC Entire virtual nucleus. SQA, LSQA, and the PSA are included.

NOSYM No symptom dump is to be produced.

IEAABD00 parmlib member

Contains ABDUMP parameters for a SYSABEND
dump data set

IEADMP00 parmlib member

Contains ABDUMP parameters for a SYSUDUMP
dump data set

IEASMR00 parmlib member

Contains ABDUMP parameters for a SYSMDUMP
dump data set

SDATA options for members
210 ABCs of z/OS System Programming Volume 8

SUM Requests that the dump contain summary data, which includes the following:

–Dump title.

–Abend code and PSW at the time of the error.

–If the PSW at the time of the error points to an active load module: (1) the
name and address of the load module, (2) the offset into the load module
indicating where the error occurred, and (3) the contents of the load
module.

–Control blocks related to the failing task.

–Recovery termination control blocks.

–Save areas.

–Registers at the time of the error.

–Storage summary consisting of 1K (1024) bytes of storage before and 1K
bytes of storage after the addresses pointed to by the registers and the
PSW. The storage will be printed only if the user is authorized to obtain it,
and, when printed, duplicate addresses will be removed.

–System trace table entries for the dumped address space.

NUC Read/write portion of the control program nucleus. SQA, LSQA, and the PSA
are included.

PCDATA Program call information for the task being dumped.

SQA The system queue area.

LSQA Local system queue area for the address space. If storage is allocated for
subpools 229, 230 and 249, they will be dumped for the current task.

SWA Scheduler work area used for the failing task.

CB Control blocks related to the failing task.

ENQ Global resource serialization control blocks for the task.

TRT System trace table and GTF trace, as available.

DM Data management control blocks (DEB, DCB, IOB) for the task.

IO IOS control blocks (UCB, EXCPD) for the task.

ERR Recovery termination control blocks (RTM2WA, registers from the SDWA,
SCB, EED) for the task.
Chapter 8. Debug and maintenance tools 211

8.5 PDATA options (only valid for IEADMP00)

Figure 8-13 The PDATA options for ABEND dumps

PDATA options for abend dumps
Following are the PDATA options:

ALLPDATA All the following options are automatically specified.
The following parameters request dump of specific PDATA areas, as indicated:

PSW Program status word at entry to abend.

REGS Contents of general registers at entry to abend.

SA or SAH SA requests save area linkage information and a backward trace of save areas.
This option is automatically selected if ALLPDATA is specified.

SAH Requests only save area linkage information.

JPA Contents of the job pack area that relate to the failing task. These include
module names and contents.

LPA Contents of the LPA related to the failing task. These include module names
and contents. Also includes active SVCs related to the failing task.

ALLPA Contents of both the job pack area and the LPA, as they relate to the failing
task, plus SVCs related to the failing task.

SPLS User storage subpools (0-127, 129-132, 244, 251, and 252) related to the
failing task.

SUBTASKS Problem data (PDATA) options requested for the designated task will also be in
effect for its subtasks.

ALLPDATA - Specifies all PDATA options

PSW

REGS

SA

SAH

JPA

LPA

ALLPA

SPLS

SUBTASKS
212 ABCs of z/OS System Programming Volume 8

8.6 SDATA and PDATA recommendations

Figure 8-14 SDATA and PDATA options for dumps and SLIP traps

SDATA and PDATA options
The following SDATA and PDATA parameters will provide you and IBM with sufficient data to
solve most problems.

SDATA=(CSA,RGN,PSA,SQA,LSQA,TRT,SUM),
PDATA=(PSW,REGS,SPLS,ALLPA,SA)

IEADMCxx (dump command parameter library)
IEADMCxx enables you to supply DUMP command parameters through a parmlib member. It
enables the operator to specify the collection of dump data without having to remember and
identify all the systems, address spaces, and data spaces involved.

This parmlib enables you to specify lengthy DUMP commands without having to reply to
multiple writes to operator with reply (WTORs). Any errors in an original specification may be
corrected and the DUMP command respecified.

IEADMCxx is an installation-supplied member of SYS1.PARMLIB that can contain any valid
DUMP command. A dump command may span multiple lines and contain system static and
(DUMP command SYMDEF defined) symbols and comments.

Figure 8-15 on page 214 shows a sample of what might be included in a
SYS1.PARMLIB(IEADMCxx) member. As you can see, to key in this data when we need to
capture a dump would be time-consuming and prone to errors. This simplifies the process

SDATA and PDATA parameters that solve most
problems

SDATA=(CSA,RGN,PSA,SQA,LSQA,TRT,SUM),

PDATA=(PSW,REGS,SPLS,ALLPA,SA)

IEADMCxx parmlib member for dump commands

DUMP TITLE=(CICS Looping),PARMLIB=CI

DUMP COMM=(..........),PARMLIB=(xx)

Setting SLIP traps

SYS1.PARMLIB(IEASLPxx)

SET SLIP=xx
Chapter 8. Debug and maintenance tools 213

and when you need to capture a dump you can refer to the IEADMCxx member in the dump
command. For example:

DUMP TITLE=(CICS Looping), PARMLIB=CI

where CI is the IEADMCxx parmlib member using the suffix, SYS1.PARMLIB(IEADMCCI).

The title is the name (1 to 100 characters) you want the dump to have. This title becomes the
first record in the dump data set. COMM= and TITLE= are synonyms.

You can also use the parmlib parameter as follows:

DUMP COMM=(..........),PARMLIB=(xx)

Figure 8-15 IEADMCxx example

IEASLPxx (SLIP commands)
Use IEASLPxx to contain SLIP commands. The commands can span multiple lines, and the
system processes the commands in order.

We recommend that you move any SLIP commands in the COMMNDxx and IEACMDxx
parmlib members into a IEASLPxx parmlib member. By using IEASLPxx to contain your SLIP
commands, you avoid restrictions found in other parmlib members.

Figure 8-16 shows a sample of what may be contained in SYS1.PARMLIB(IEASLPxx). In this
example we are actually suppressing dumps.

Figure 8-16 SYS1.PARMLIB(IEASLPxx)

Figure 8-17 on page 215 shows a much more complex SLIP that will capture dumps in
multiple MVS images, when a certain message, IXC521I, is generated and Register 5
contains some specific data. It will dump the Console address space, the MSOPS address
space, and also the XCFAS address space.

TITLE=(DYNDUMP FOR IMS810I,IVP8IRC1,IVP8IDL1,IVP8IM11,
IVP8IM12,IVP8IM13,RRS,APPC)
JOBNAME=(IMS810I,IVP8IRC1,IVP8IDL1,IVP8IM11,IVP8IM12,IVP8IM13,
RRS,APPC)
DSPNAME=('APPC'.*,'RRS'.*)
SDATA=(PSA,SQA,LSQA,RGN,LPA,TRT,CSA,SWA,SUM,ALLNUC,GRSQ)

SLIP SET,C=013,ID=X013,A=NOSVCD,J=JES2,END
SLIP SET,C=213,ID=X213,A=NOSVCD,END
SLIP SET,C=028,ID=X028,A=NOSVCD,END
SLIP SET,C=058,ID=X058,A=NODUMP,DATA=(15R,EQ,4,OR,15R,EQ,8,OR,
 15R,EQ,C,OR,15R,EQ,10,OR,15R,EQ,2C,OR,15R,EQ,30,OR,
 15R,EQ,3C),END
SLIP SET,C=0E7,ID=X0E7,A=NOSVCD,END
SLIP SET,C=0F3,ID=X0F3,A=NODUMP,END
SLIP SET,C=13E,ID=X13E,A=NODUMP,END
SLIP SET,C=1C5,RE=00090004,ID=X1C5,A=NODUMP,END
SLIP SET,C=222,ID=X222,A=NODUMP,END
SLIP SET,C=322,ID=X322,A=NODUMP,END
SLIP SET,C=33E,ID=X33E,A=NODUMP,END
SLIP SET,C=422,ID=X422,A=NODUMP,END
SLIP SET,C=47B,DATA=(15R,EQ,0,OR,15R,EQ,8),ID=X47B,A=NODUMP,END
SLIP SET,C=622,ID=X622,A=NODUMP,END
214 ABCs of z/OS System Programming Volume 8

Figure 8-17 SLIP example with increased complexity

The SLIP is activated by issuing the SET SLIP=xx MVS command, where xx is the IEASLPxx
parmlib member you want to activate.

SLIP SET,MSGID=IXC521I,
DATA=(5R?+0,EQ,C8C1E240,+4,EQ,D9C5C1C3),
ACTION=SVCD,JOBLIST=(CONSOLE,XCFAS),
DSPNAME=('XCFAS'.IXCDSL01),
REMOTE=(SYSLIST=(SC55,SC66),
JOBLIST=(CONSOLE,MSOPS,XCFAS),DSPNAME=('XCFAS'.IXCDSL01)),
SDATA=(NUC,CSA,GRSQ,LPA,LSQA,PSA,RGN,SQA,SWA,TRT),
MATCHLIM=3,ID=RON1,END
Chapter 8. Debug and maintenance tools 215

216 ABCs of z/OS System Programming Volume 8

Chapter 9. SDSF and RMF

SDSF System Display and Search Facility
SDSF provides you with information to monitor, manage, and control your z/OS MVS/JES2
system. It can help you run your business and save you time and money.

SDSF panels provide current information about jobs, output, devices (including printers,
punches, initiators, lines, spool offloaders, and spool volumes) and system resources,
including nodes and WLM enclaves, anywhere in the JES2 Multi-Access Spool (MAS).

With SDSF panels, there is no need to learn or remember complex command syntax. SDSF's
action characters, fields that can be overtyped, action bar, pull-downs, and pop-up windows
allow you to select available functions.

RMF Resource Measurement Facility
RMF is designed to ease the management of single or multiple system workload and to
enable faster reaction to system delays. Detecting a possible bottleneck early means that
corrective actions can be taken earlier. System delays are avoided or at least remedied at an
early stage.

System programmers are supported by several reports that ease their work, helping them to
tune their system optimally. Consequently, this leads to fewer workload problems and, most
important, increases system and operator productivity, a fact that makes the company as a
whole more effective at less cost.

9

© Copyright IBM Corp. 2007. All rights reserved. 217

9.1 System Display and Search Facility (SDSF)

Figure 9-1 SDSF and RMF

System Display and Search Facility (SDSF)
SDSF gives you an easy and efficient way to monitor, manage, and control the key aspects of
your MVS/JES2 system. Using SDSF, you can:

� Control job processing (hold, release, cancel, and purge jobs)
� Control output, and browse jobs without printing
� Control devices such as printers, lines, and initiators across the MAS
� Browse the syslog
� Manage system resources, such as members of the MAS, job classes, and WLM enclaves

With SDSF panels, there is no need to learn or remember complex command syntax. The
SDSF action characters, overtypable fields, action bar, pull-downs, and pop-up windows
allow you to select available functions. The SDSF primary option menu is shown in Figure 9-2
on page 219.

SDSF provides an easy way to manage work productively, as follows:

� Control jobs
� Control output
� Control devices
� Manage system resources

To become familiar with the panel handling and the output, select a function. If the RACF
administration has been done correctly you should not be able to delete or destroy

SDSF
RMF

RMFRMF
MONITORMONITOR

SpoolSpool
(SYSLOG)(SYSLOG)
218 ABCs of z/OS System Programming Volume 8

processes. The following shows the active users on a system. To get this output select DA,
as shown in Figure 9-3 on page 220

Figure 9-2 SDSF Primary Option Menu

 Display Filter View Print Options Help

 HQX7720 ----------------- SDSF PRIMARY OPTION MENU --------------------------
 COMMAND INPUT ===> SCROLL ===> PAGE

 DA Active users INIT Initiators
 I Input queue PR Printers
 O Output queue PUN Punches
 H Held output queue RDR Readers
 ST Status of jobs LINE Lines
 NODE Nodes
 LOG System log SO Spool offload
 SR System requests SP Spool volumes
 MAS Members in the MAS
 JC Job classes RM Resource monitor
 SE Scheduling environments CK Health checker
 RES WLM resources
 ENC Enclaves ULOG User session log
 PS Processes

 END Exit SDSF

 Licensed Materials - Property of IBM

 5694-A01 (C) Copyright IBM Corp. 1981, 2005. All rights reserved.
 US Government Users Restricted Rights - Use, duplication or
 disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
Chapter 9. SDSF and RMF 219

Figure 9-3 Display active address spaces

 Display Filter View Print Options Help

 SDSF DA SC69 SC69 PAG 0 CPU/L 4/ 4 LINE 1-26 (70)
 COMMAND INPUT ===> SCROLL ===> PAGE
 PREFIX=* DEST=(ALL) OWNER=* SYSNAME=
 NP JOBNAME StepName ProcStep JobID Owner C Pos DP Real Paging SIO
 MASTER STC14926 +MASTER+ NS FF 6339 0.00 0.00
 PCAUTH PCAUTH NS FF 152 0.00 0.00
 RASP RASP NS FF 531 0.00 0.00
 TRACE TRACE NS FF 594 0.00 0.00
 DUMPSRV DUMPSRV DUMPSRV NS FF 409 0.00 0.00
 XCFAS XCFAS IEFPROC NS FF 21T 0.00 0.00
 GRS GRS NS FF 13T 0.00 0.00
 SMSPDSE SMSPDSE NS FF 58T 0.00 0.00
 SMSVSAM SMSVSAM IEFPROC NS FF 11T 0.00 0.00
 CONSOLE CONSOLE NS FF 7931 0.00 0.00
 WLM WLM IEFPROC NS FF 4641 0.00 0.00
 ANTMAIN ANTMAIN IEFPROC NS FF 1298 0.00 0.00
 ANTAS000 ANTAS000 IEFPROC NS FE 1137 0.00 0.00
 DEVMAN DEVMAN IEFPROC NS FF 150 0.00 0.00
 OMVS OMVS OMVS NS FF 352T 0.00 0.00
220 ABCs of z/OS System Programming Volume 8

9.2 Using the SYSLOG for debugging

Figure 9-4 Using the SYSLOG for problem analysis

SYSLOG
The SYSLOG is a SYSOUT data set provided by the job entry subsystem (JES2 or JES3).
SYSOUT data sets are output spool data sets on direct access storage devices (DASD). Print
the SYSLOG periodically to check for problems. The SYSLOG consists of the following:

� All messages issued through WTL macros

� All messages entered by LOG operator commands

� Usually, the hard-copy logs

� Any messages routed to the SYSLOG from any system component or program

It can be used by application and system programmers to record communications about
problem programs and system functions. The operator can use the LOG command to add an
entry to the system log.

SYSLOG is queued for printing when the number of messages recorded reaches a threshold
specified at system initialization. The operator can force the system log data set to be queued
for printing before the threshold is reached by issuing the WRITELOG command. The
SYSLOG can be viewed using SDSF with JES2 and with (E)JES with JES3 systems.

The SYSLOG, often referred to as the hard-copy log, is a record of all system message
traffic, as follows:

� Messages to and from all consoles

SYSLOG data set on JES spool

View SYSLOG using SDFS with JES2

View with (E)JES with JES3

Can be queued for printing

Viewing messages in a DUMP

Messages appear in the master trace

Using SYSLOG for debugging

Check messages in the SYSLOG for ABENDs
Chapter 9. SDSF and RMF 221

� Commands and replies that are entered by the operator

In a dump, these messages appear in the master trace. With JES3, the hard-copy log is
always written to the SYSLOG. With JES2, the hard-copy log is usually written to the
SYSLOG but can be written to a console printer, if the installation chooses.

SYSLOG for debugging
To check for messages and abend information, have a look at the SYSLOG. To view the
system log, enter log on the command line. Figure 9-5 shows an example starting with the
time stamp and followed by the messages. In the complete output you will get more
information. Data that would normally be seen to the left of the time stamp has been removed
for presentation.

Figure 9-5 Sample SYSLOG output

D U,,ALLOC,8052,1
IEE106I 17.04.19 UNITS ALLOCATED 881
UNIT JOBNAME ASID JOBNAME ASID JOBNAME ASID JOBNAME ASID
8052 *MASTER* 0000 *MASTER* 0001 DUMPSRV 0005 XCFAS 0006
8052 LLA 0018 JES2 001A VTAM44 001B NFSCLNT7 001D
8052 RMF 0024 ZFS 0028 APPC 002A DFRMM 002E
8052 OPTSO 0030 RACF 0031 OSASF 004D HAIMO 0050
8052 RMFGAT 0055 NFSMVS7 0058
D GRS,C
ISG343I 17.04.38 GRS STATUS 883
NO ENQ RESOURCE CONTENTION EXISTS
NO REQUESTS PENDING FOR ISGLOCK STRUCTURE
NO LATCH CONTENTION EXISTS
IEF126I HAIMO - LOGGED OFF - TIME=17.13.48 - ASID=0050 - SC69
$HASP395 HAIMO ENDED
$HASP100 HAIMO ON TSOINRDR
$HASP373 HAIMO STARTED
IEF125I HAIMO - LOGGED ON - TIME=17.13.51 - ASID=0050 - SC69
IEF126I HAIMO - LOGGED OFF - TIME=17.14.05 - ASID=0050 - SC69
$HASP395 HAIMO ENDED
IEA631I OPERATOR BOBH NOW INACTIVE, SYSTEM=SC69 , LU=SC38TCC6
222 ABCs of z/OS System Programming Volume 8

9.3 RMF Resource Measurement Facility

Figure 9-6 RMF data gatherer

RMF
Resource Measurement Facility (RMF) is shipped with every release of z/OS at the current
level of support. It is integration tested with z/OS and includes the enhancements available
with every new release. It's easier than ever to install RMF. RMF is an optional feature of
z/OS.

RMF is designed to ease the management of single or multiple system workloads and to
enable faster reaction to system delays. Detecting a possible bottleneck early means that
corrective actions can be taken earlier. System delays are avoided or at least remedied at an
early stage.

System programmers are supported by several reports that ease their work, helping them to
tune their system optimally. Consequently, this leads to fewer workload problems and, most
important, increases system and operator productivity, a fact that makes the company as a
whole more effective at less cost.

RMF issues reports about performance problems as they occur, so that your installation can
take action before the problems become critical. Your installation can use RMF to:

� Determine that your system is running smoothly

� Detect system bottlenecks caused by contention for resources

� Evaluate the service your installation provides to different groups of users

� Identify the workload delayed and the reason for the delay

RMF Spreadsheet Reporter

0
10
20
30
40
50
60
70
80
90
100

Historical Reporting
Analysis and Planning

RMF Postprocessor

Real-Time Reporting
Problem Determination and Data Reduction

RMF Sysplex Data Server and APIs

RMF Monitor II and III

Windows

RMF PM

SMFSMF

RMF Data Gatherer RMF
Monitor I

RMF
Monitor III

RMF
Monitor II

background

VSAM
Chapter 9. SDSF and RMF 223

� Monitor system failures, system stalls, and failures of selected applications

RMF monitors
RMF comes with three monitors, Monitor I, II and III. Monitor III with its ability to determine the
“cause of delay” is where we start:

Monitor III provides short-term data collection and online reports for continuous monitoring of
system status and solving performance problems.

Monitor III is a good place to begin system tuning. It allows the system tuner to distinguish
between delays for important jobs and delays for jobs that are not as important to overall
system performance.

Monitor I provides long-term data collection for system workload and resource utilization. The
Monitor I session is continuous, and measures various areas of system activity over a long
period of time. You can get Monitor I reports directly as real-time reports for each completed
interval (single-system reports only), or you run the postprocessor to create the reports, either
as single-system or as sysplex reports. Many installations produce daily reports of RMF data
for ongoing performance management.

Monitor II provides online measurements on demand for use in solving immediate problems.
A Monitor II session can be regarded as a snapshot session. Unlike the continuous Monitor I
session, a Monitor II session generates a requested report from a single data sample. Since
Monitor II is an ISPF application, you might use Monitor II and Monitor III simultaneously in
split-screen mode to get different views of the performance of your system. In addition, you
can use the Spreadsheet Reporter for further processing the measurement data on a
workstation by help of spreadsheet applications. The following sections provide sample
reports including the name of the corresponding macro.

Find a detailed description on how to create the reports and records and on how to use the
macros in RMF User’s Guide, SC28-1949.
224 ABCs of z/OS System Programming Volume 8

9.4 RMF Monitor I data gathering

Figure 9-7 RMF Monitor output

Monitor I
Monitor I measures and reports the use of system resources (that is, the processor, I/O
devices, storage, and data sets on which a job can enqueue during its execution). It runs in
the background and measures data over a time period. Reports can be printed immediately
after the end of the measurement interval, or the data can be stored in SMF records and
printed later with the RMF postprocessor, which can be used to generate reports for
exceptions, that is, conditions where user-specified values are exceeded. SMF data is kept in
VSAM data sets as the postprocessor requires a sequential format. Use the SMF dump utility,
IFASMFDP, to unload the data. Usually Generation Data Groups (GDGs) are the preferred
target:

RMF.SMFDATA.SYSNAME(0)

IFASMFDP to unload JCL
Figure 9-8 on page 226 shows the JCL to unload the SMF data.

1. Measurements
 - CACHE SMF 74.5
 - CHANNEL SMF 73
 - CPU SMF 70.1
 - CRYPTO SMF 70.2
 - DEVICE SMF 74.1
 - ENQ SMF 77
 - IOQ SMF 78.3
 - FCD SMF 74.7
 - PAGESP SMF 76
 - PAGING SMF 71
 - TRACE SMF 76
 - VSTOR SMF 78.2
 - WLKD SMF 72.3
2. Timing
 - CYCLE(1000)
 - NOSTOP
 - SYNC(SMF)
3. Reporting / Recording
 - RECORD
 - REPORT(REALTIME)
 - SYSOUT(A)
4 User Exits
 - NOEXITS

SMFSMF

SMF 74.2 XCF
SMF 74.3 OMVS
SMF 74.4 CF
SMF 74.6 HFS

Gathered by
 Monitor III
Chapter 9. SDSF and RMF 225

Figure 9-8 IFASMFDP to unload JCL

Sort JCL job
To get an output sorted by date and time, the following sort job is required for sysplex-wide
reporting.

Figure 9-9 Sort JCL

//SMFDUMP EXEC PGM=IFASMFDP
//IDD1 DD DISP=SHR,DSN=<input_smfdata_system1>
//IDD2 DD DISP=SHR,DSN=<input_smfdata_system2>
//SMFDATA DD DISP=(NEW,PASS),SPACE=(CYL,(10,10),RLSE),
// UNIT=SYSDA,DCB=(RECFM=VBS,LRECL=32760,BLKSIZE=0)
//SYSIN DD *
INDD(IDD1,OPTIONS(DUMP))
INDD(IDD2,OPTIONS(DUMP))
OUTDD(SMFDATA,TYPE(70:78))

//RMFSORT EXEC PGM=SORT
//SORTIN DD DISP=SHR,DSN=<input_smfdata_system1>
// DD DISP=SHR,DSN=<input_smfdata_system2>
//SYSIN DD *
SORT FIELDS=(11,4,CH,A,7,4,CH,A),EQUALS
MODS E15=(ERBPPE15,36000,,N),E35=(ERBPPE35,3000,,N)
226 ABCs of z/OS System Programming Volume 8

9.5 Monitor II data gathering

Figure 9-10 RMF Monitor II data gathering

Monitor II
Monitor II tells you what is happening right now on your system, how system resources are
used, and how your address spaces are doing. Several standard reports are provided, and
you can add your own reports. You cannot see older or historical data. You can only see what
is happening right now on your system, or current data.

You can collect data to SMF data sets continuously for Monitor II reports. In this case, you
decide beforehand which reports you will produce by specifying them to the Monitor II data
gatherer. Later, you can write the reports using the postprocessor for the period you want to
see. This is a useful method, for example, if you want to get information every third second
about certain address spaces for one day or perhaps every day.

Starting Monitor II
To become familiar with RMF, start RMF Monitor II by issuing the TSO RMFMON command.
Figure 9-11 shows the RMF display menu. Monitor II is a snapshot reporting tool for very fast
information about how specific address spaces or system resources (processor, DASD
volumes, storage) are performing. Monitor II has two modes for reporting on the performance
of your system.

Monitor II is a snapshot reporter
Collects the status of system resources (CPU, devices,..)
Collects the status of address spaces (resource usage,..)

Use Monitor II to:
Coninuously monitor resource usage
Determine the state of any address space in the system
Track CPU usage of problem address spaces
Collect supplemental information when analyzing
performance problems with Monitor III

Choose background session to:
Collect SMFA records for archiving and later processing
Automate snapshot reporting

Choose display session for:
Immediate feedback
Online analysis
Chapter 9. SDSF and RMF 227

Figure 9-11 RMF display menu

ARD report
In the ARD report, the number of data lines in the report depends on the number of address
space identifiers in the system that meet your selection criteria. The shown report is a sample
for a system running in z/Architecture. Figure 9-12 shows the result of issuing the ARD
command, showing data for each ASID. The key information we are looking for is who is
consuming the CPU and/or EXCP cycles.

Figure 9-12 Output of the ARD command

To leave the RMF panel, enter end.
228 ABCs of z/OS System Programming Volume 8

9.6 RMF Monitor III data gathering

Figure 9-13 RMF Monitor III data gathering

Monitor III
Monitor III tells you how well your single system or sysplex is performing, and what is going
on. This is presented at different levels:

� Sysplex-wide reports about the workloads, Coupling Facilities, and caching

� System-wide reports about the resources and address spaces

You can see what is happening right now, typically during the last 60 seconds. You can also
see what happened recently or you might be able to see what happened the day before
yesterday depending on your installation setup. Additionally, you can dynamically change the
time frame you want to observe. For example, your actions might be:

� Using 10-minute time frames on one day, travelling backward and forward, to find the
most interesting 10-minute period.

� Using one-minute time frames, travelling backward and forward, to find the most
interesting one-minute period.

At that point, it should be easy to locate the system, partition, address space, device, or
whatever it is that you want to examine.

Monitor III Delay Monitoring
 - Processor
 - Storage
 - Device
 - Enqueue
 - Operaotr
 - Message
 - Tape mount
 - Subsystem
 - HSM - JES- XCF
Monitor III Activity Monitoring
 - Common storage
 - Page/Swap data sets
 - Storage frames
 - Device
 - Data set level by job and volume
 - Cache
 - Coupling Facility
 - Goal attainment
 - VSAM RLS
 - UNIX System Services
 - Enclaves

Monitor III Advanced Features
 - Cursor sensitive navigation
 - Workflow exceptions monitoring
 - Automatic customization
 - Continue monitoring
 - Hardcopy reports
 - Online tutorial
 - Online help
 - Adaptive reports
 - User reports
 - GDDM graphics
 - Sysplex-wide reports
 - Remote reporting

RMFRMF
Monitor IIIMonitor III
Chapter 9. SDSF and RMF 229

230 ABCs of z/OS System Programming Volume 8

Chapter 10. z/Architecture and addressing

z/Architecture is the next step in the evolution from System/360™ to System/370™,
System/370 Extended Architecture (370-XA), Enterprise Systems Architecture/370*
(ESA/370),and Enterprise Systems Architecture/390® (ESA/390). In order to understand
z/Architecture you have to be familiar also with the basics of ESA/390 and its predecessors.

An address space maps all of the available addresses, and includes system code and data as
well as user code and data. Thus, not all of the mapped addresses are available for user code
and data. This limit on user applications was a major reason for System/370 Extended
Architecture (370-XA) and MVS/XA™. Because the effective length of an address field
expanded from 24 bits to 31 bits, the size of an address space expanded from 16 megabytes
to 2 gigabytes. An MVS/XA address space is 128 times as big as an MVS/370 address
space.

This chapter describes:

� Program status word (PSW)

� Address space addressability

� Dumps in 31-bit and 64-bit modes

10
© Copyright IBM Corp. 2007. All rights reserved. 231

10.1 Program status word (PSW)

Figure 10-1 Program status word (PSW)

Program status word
One very important piece of information that will be crucial to your ability to diagnose a
problem on z/OS is the program status word, more commonly referred to as the PSW. The
PSW includes the instruction address, condition code, and other information to control
instruction sequencing and to determine the state of the CPU. The active or controlling PSW
is called the current PSW.

The PSW is so important because it keeps track of the progress of the system and the
executing program. The current PSW usually points to the address of the next instruction to
be executed. In some specific cases the PSW will point to the address of the failing
instruction and this occurs when the interrupt code is 0010, which is a segment translation
exception, or interrupt code 0011, which is a page translation exception.

What this means is that when a task abends and a dump is taken, the PSW is pointing to the
next instruction that will be executed in the failing program. By subtracting the
instruction-length code (ILC) from the PSW address, we will be looking at the failing
instruction for which the abend was triggered.

Note: For page translation and segment translation errors, the PSW points to the failing
instruction.

ABEND0C4

Abending Program Area

Address Instruction
060342E6 47D0C728
060342EA 187F
060342EC DB798000600
060342F2 1FF7

System abend code: 00C4

PSW: 070C2000 860342EC
232 ABCs of z/OS System Programming Volume 8

10.2 Program-status word (PSW)

Figure 10-2 Program Status Word (PSW)

Current PSW
The current PSW is a storage circuit located within the CP. It contains information required for
the execution of the currently active program, or, in other words, it contains the current state
of a CP. It has 16 bytes (128 bits). The PSW includes the instruction address, condition code,
and other information used to control instruction sequencing and to determine the state of the
CP. The active or controlling PSW is called the current PSW. It governs the program currently
being executed. Figure 10-2 describes the PSW from bits 0 to 127.

PER mask - R (bit 1)
Bit 1 controls whether the CP is enabled for interrupts associated with program-event
recording (PER). When the bit is zero, no PER event can cause an interruption. When the bit
is one, interruptions are permitted, subject to the PER-event-mask bits in control register 9.

DAT mode - T (bit 5)
Bit 5 controls whether implicit dynamic address translation of logical and instruction
addresses used to access storage takes place. When the bit is zero, DAT is off, and logical
and instruction addresses are treated as real addresses. When the bit is one, DAT is on, and
the dynamic-address-translation mechanism is invoked.

I/O mask - IO (bit 6)
Bit 6 controls whether the CP is enabled for I/O interruptions. When the bit is zero, an I/O
interruption cannot occur. When the bit is one, I/O interruptions are subject to the

0

0 5 8 12 16 18 20 24 31

63

64 95

96 127

32

0 00R T
I
O Key MWP

E
X 0 A SC C

Prog
Mask 0000000

E
A

B
A

0000000

Instruction Address (Continued)

Instruction Address

00000000000000000 0000000
Chapter 10. z/Architecture and addressing 233

I/O-interruption subclass-mask bits in control register 6. When an I/O-interruption
subclass-mask bit is zero, an I/O interruption for that I/O-interruption subclass cannot occur;
when the I/O-interruption subclass-mask bit is one, an I/O interruption for that I/O-interruption
subclass can occur.

External mask - EX (bit 7)
Bit 7 controls whether the CP is enabled for interruption by conditions included in the external
class. When the bit is zero, an external interruption cannot occur. When the bit is one, an
external interruption is subject to the corresponding external subclass-mask bits in control
register 0; when the subclass-mask bit is zero, conditions associated with the subclass
cannot cause an interruption; when the subclass-mask bit is one, an interruption in that
subclass can occur.

PSW key (bits 8-11)
Bits 8-11 form the access key for storage references by the CP. If the reference is subject to
key-controlled protection, the PSW key is matched with a storage key when information is
stored or when information is fetched from a location that is protected against fetching.
However, for one of the operands of each of MOVE TO PRIMARY, MOVE TO SECONDARY,
MOVE WITH KEY, MOVE WITH SOURCE KEY, and MOVE WITH DESTINATION KEY, an
access key specified as an operand is used instead of the PSW key.

Machine-check mask - M (bit 13)
Bit 13 controls whether the CP is enabled for interruption by machine-check conditions.
When the bit is zero, a machine-check interruption cannot occur. When the bit is one,
machine-check interruptions due to system damage and instruction-processing damage are
permitted, but interruptions due to other machine-check-subclass conditions are subject to
the subclass-mask bits in control register 14.

Wait state - W (bit 14)
When bit 14 is one, the CP is waiting; that is, no instructions are processed by the CP, but
interruptions may take place. When bit 14 is zero, instruction fetching and execution occur in
the normal manner. The wait indicator is on when the bit is one. When in a wait state, the only
way of getting out of that state is through an interruption, or IPL (a z/OS boot). Certain bits in
the current PSW, when off, place the CP in a disabled state, that is, it does not accept
interrupts. So, when z/OS because of any error reason (software or hardware) decides to
stop a CP, it sets the PSW in a disabled and wait state, forcing an IPL as the way to get the
CP back in a running state.

Problem state - P (bit 15)
When bit 15 is one, the CP is in the problem state. When bit 15 is zero, the CP is in the
supervisor state. In the supervisor state, all instructions are valid. In the problem state, only
those instructions are valid that provide meaningful information to the problem program and
that cannot affect system integrity; such instructions are called unprivileged instructions. The
instructions that are never valid in the problem state are called privileged instructions. When a
CP in the problem state attempts to execute a privileged instruction, a privileged-operation
exception is recognized. Another group of instructions, called semiprivileged instructions, are
executed by a CP in the problem state only if specific authority tests are met; otherwise, a
privileged-operation exception or a special-operation exception is recognized.

Address-space control -AS (bits 16-17)
Bits 16 and 17, in conjunction with PSW bit 5, control the translation mode.
234 ABCs of z/OS System Programming Volume 8

Condition code - CC (bits 18-19)
Bits 18 and 19 are the two bits of the condition code. The condition code is set to 0, 1, 2, or 3,
depending on the result obtained in executing certain instructions. Most arithmetic and logical
operations, as well as some other operations, set the condition code. The instruction
BRANCH ON CONDITION can specify any selection of the condition code values as a
criterion for branching.

The part of the CP that executes instructions is called the arithmetic logic unit (ALU). The
ALU has four internal bits that are set by certain instructions. At the end of such instructions
this 4-bit configuration is mapped into bits 18 and 19 of the current PSW.

As an example, the instruction COMPARE establishes a comparison between two operands.
The result of the comparison is placed in the CC of the current PSW, as follows:

� CC=00, the operands are equal
� CC=01, the first operand is lower
� CC=10, the first operand is greater

To test the contents of a CC (set by a previous instruction), use the BRANCH ON
CONDITION (BC) instruction. It has an address of another instruction (branch address) to be
executed depending on the comparison of the CC and a mask M. The instruction address in
the current PSW is replaced by the branch address, if the condition code has one of the
values specified by M; otherwise a normal instruction sequencing proceeds with the normal
updated instruction address. Here are the types of codes:

� Condition code - bits 18 and 19 of the PSW
� Return code - a code associated with how a program ended
� Completion code - a code associated with how a task ended
� Reason code - a code passed in GPR 15, giving more details about how a task ended

Program Mask (bits 20-23)
During the execution of an arithmetic instruction, the CP may find some unusual (or error)
condition, such as: overflows, loss of significance, underflow. In these cases, the CP
generates a program interrupt. When this interrupt is treated by z/OS, usually the current task
is abnormally ended (abend). However, in certain situations the programmer does not want
an abend, so through the instruction SET PROGRAM MASK (SPM), he or she can mask
such interrupts by setting to off some of the program mask bits. Each bit is associated with
one type of condition:

� Fixed point overflow (bit 20)
� Decimal overflow (bit 21)
� Exponent underflow (bit 22)
� Significance (bit 23)

Observe that the active program is informed about the above events through the condition
code posted by the instruction where the events described happened.

The contents of the CP can be totally changed by two events:

� Loading a new PSW from storage along an interruption
� Executing the instruction LPSW, which copies 128 bits from memory to the current PSW.

Extended addressing mode - EA, BA (bits 31-32)
The combination of bits 31 and 32 specify the addressing mode (24, 31, or 64) of the running
program. Bit 31 controls the size of effective addresses and effective address generation in
conjunction with bit 32, the basic addressing mode bit. When bit 31 is zero, the addressing
mode is controlled by bit 32. When bits 31 and 32 are both one, 64-bit addressing is specified.
Chapter 10. z/Architecture and addressing 235

10.3 64-bit addressing

Figure 10-3 64-bit addressing

What is addressability
One of the major developments of the MVS operating system was the implementation of
31-bit addressing. Prior to MVS/XA the highest virtual storage location that could be
addressed was 16 megabytes, or hexadecimal FFFFFF. Actually, it was one byte less that 16
megabytes, because we start at zero. As applications grew larger the 24-bit architecture
limitations were recognized, and 31-bit addressability was introduced. The 31-bit standard
increased the amount of addressable virtual storage to 2 gigabytes. The addressing mode of
a program is determined by the high order bit (bit 32 of the PSW) of the instruction address. If
this bit is set to 1 the processor is running in 31-bit mode. If it is 0 then the processor is
running in 24-bit mode.

We have now taken the next step in storage addressability with z/OS, implementing 64-bit
addressing. This means that the maximum storage that can be addressed is 2 ** 64, or 16
exabytes. The highest address when running in 64-bit mode is X’FFFFFFFF_FFFFFFFF’ as
opposed to the previous 31-bit high address of X’7FFFFFFF’.

Format of the PSW
Prior to z/OS and 64-bit mode operations, the PSW was 64 bits in length and comprised of
two 32-bit words. The first 32 bits (identified as bits 0 through 31) related to system state and
mode status, but the second 32 bits (identified as bits 32 through 63 as shown in Figure 10-4
on page 238) indicated the addressing mode in the first bit and the address of the next
instruction in bits 33 through 63. The second word is what will interest us in most cases, as
shown in Figure 10-3.

0

0 5 8 12 16 18 20 24 31

63

64 95

96 127

32

0 00R T
I
O Key MWP

E
X 0 A SC C

Prog
Mask 0000000

E
A

B
A

0000000

Instruction Address (Continued)

Instruction Address

00000000000000000 0000000
236 ABCs of z/OS System Programming Volume 8

For example,

PSW: 075C2000 82CC5BCC Instruction length: 02

Instruction address (bits 64 to 127)
Bits 64 to 127, shown in Figure 10-3 on page 236, point to the storage address of the next
instruction to be executed by this CP. When an instruction is fetched from main storage, its
length is automatically added to this field. It then points to the next instruction address.
However, there are instructions such as a BRANCH that may replace the contents of this
field, pointing to the branched instruction. The address contained in this PSW field may have
24, 31, or 64 bits, depending on the addressing mode attribute of the executing program. For
compatibility reasons, old programs that use small addresses are still allowed to execute.
When in 24- or 31-bit addressing mode, the leftmost bits of this field are filled with zeroes.

CP interrupts
The CP has an interrupt capability, which permits it to switch rapidly to another program in
response to exceptional conditions and external stimuli. When an interrupt occurs, the CP
places the current PSW in an assigned storage location, called the old-PSW location, for the
particular class of interrupt. The CP fetches a new PSW from a second assigned storage
location. This new PSW determines the next program to be executed. When it has finished
processing the interrupt, the program handling the interrupt may reload the old PSW, making
it again the current PSW, so that the interrupted program can continue.

There are six classes of interrupt: external, I/O, machine check, program, restart, and
supervisor call. Each class has a distinct pair of old-PSW and new-PSW locations
permanently assigned in real storage.
Chapter 10. z/Architecture and addressing 237

10.4 Next sequential instruction

Figure 10-4 Next sequential instruction address

PSW second word
Using the PSW, example:

PSW: 075C2000 82CC5BCC Instruction length: 02

The second word of the PSW is 82CC5BCC. The first number, 8, indicates that this program is
executing in 31-bit mode. In other words, this program runs above the 16-megabyte line. The
number 8 in binary is 1000, which indicates the addressing mode bit 32 is ON. A value of zero
decimal would be binary zero, 0000, indicating that the addressing mode bit 32 is OFF, which
identifies that this location was below the 16-bit line, or in 24-bit mode.

The remaining data points to the next instruction to be executed. In this case, 2CC5BCC. For
the sake of correctness the full address would be 02CC5BCC.

Subtracting the instruction length value, in this case, 2, from the PSW address, would result in
02CC5BCA, which would point to the failing instruction.

The PSW has now changed and the z/OS 128-bit PSW is converted by MVS to a 64-bit
double word and the z/OS-formatted PSW is stored in control blocks. The PSW is
represented as follows:

AMODE 24
07850000 00000000 00000000 00065788 078D0000 00065788
AMODE 31
04041000 80000000 00000000 00FE5768 040C1000 80FE5768

BR
MVC
MVC

PSW

64 127

NEXT
SEQUENTIAL
INSTRUCTION

0

238 ABCs of z/OS System Programming Volume 8

AMODE 64
04045001 80000000 00000000 01685B28 040C5001_81685B28

The bold form of the PSW indicates the “converted” z/OS PSW. The underscore between the
two words of the converted PSW indicates that this is a 64-bit (above the bar) address.

As you can see, it looks similar to the 31-bit PSW except for the non-zero value of bit 31 in the
1st word of the PSW, 040C5001, as well as the non-zero value in bit 32 of the PSW, which is
the 1st bit of the second word, 81685B28. It is the use of bits 31 and 32 that indicates this is a
64-bit address. The address to interrogate in this case would be 1_81685B28.

In many cases, for most current applications, you will still be interrogating 31-bit storage
addresses, but in the future, as more applications make use of the extended addressability,
you will reference storage pointed to by the Addressing Mode (AMODE) 64-bit PSW.
Chapter 10. z/Architecture and addressing 239

10.5 64-bit address space

Figure 10-5 64-bit address space map

64-bit address space
With z/OS, the MVS address space expands to a size so vast that we need new terms to
describe it. Each address space, called a 64-bit address space, is 16 exabytes in size; an
exabyte is slightly more than one billion gigabytes. The new address space has logically 264
addresses. It is 8 billion times the size of the former 2-gigabyte address space that logically
has 231 addresses. The number is 16 with 18 zeros after it:

16,000,000,000,000,000,000 bytes, or 16 exabytes

If you are coding a new program that needs to store large amounts of data, a 64-bit address
space might work for you.

Introduction of 64-bit address space
As of z/OS V1R2, the address space begins at address 0 and ends at 16 exabytes, an
incomprehensibly high address. The architecture that creates this address space provides
64-bit addresses. The address space structure below the 2-gigabyte address has not
changed; all programs in AMODE 24 and AMODE 31 continue to run without change. In
some fundamental ways, the address space is much the same as the XA address space.

In the previous 31-bit address space, a virtual line marks the 16-megabyte address. The
64-bit address space also includes the virtual line at the 16-megabyte address; additionally, it
includes a second virtual line called the bar that marks the 2-gigabyte address.

User Private area

User Private area

Below 2GB0

The bar

(High Non-shared)

(Low Non-shared)

Addressability requires a
Region 1st table (R1T)

Addressability requires a
Region 2nd table (R2T)

Addressability requires a
Region 3rd table (R3T)

16M - Line

642

532
502

422
412

322
312

2 TB

512 TB

Area Reserved for
 Memory Sharing

16 E
240 ABCs of z/OS System Programming Volume 8

The bar
The bar separates storage below the 2-gigabyte address, called below the bar, from storage
above the 2-gigabyte address, called above the bar. The area above the bar is intended for
data; no programs run above the bar. There is no area above the bar that is common to all
address spaces, and no system control blocks exist above the bar. IBM reserves an area of
storage above the bar for special uses to be developed in the future.

Memory sharing
Before z/OS V1R3, all programs in AMODE 31 or AMODE 24 were unable to work with data
above the bar. To use virtual storage above the bar, a program must request storage above
the bar, be in AMODE 64, and use the new z/Architecture assembler instructions.

As of z/OS V1R5, the following enhancements for 64-bit virtual storage have been added:

� 64-bit shared memory support

� Default shared memory addressing area between 2 terabytes and 512 terabytes

This shared memory is used by z/OS UNIX applications.

Using memory above the bar
The reason why someone designing an application would want to use the area above the bar
is simple: the program needs more virtual storage than the first 2-gigabyte address space
provides. Before z/OS V1R2, a program's need for storage beyond what the former
2-gigabyte address space provided was sometimes met by creating one or more data spaces
or hiperspaces and then designing a memory management schema to keep track of the data
in those spaces. Sometimes programs written before z/OS V1R2 used complex algorithms to
manage storage, reallocate and reuse areas, and check storage availability. With the
16-exabyte address space, these kinds of programming complexities are unnecessary. A
program can potentially have as much virtual storage as it needs, while containing the data
within the program's primary or home address space.

Virtual memory above 2 GB is organized as memory objects that a program creates. A
memory object is a contiguous range of virtual addresses that are allocated by programs as a
number of application pages which are 1 MB multiples on a 1 MB boundary. Programs
continue to run and execute in the first 2 GB of the address space.

Dynamic address translation
Dynamic address translation is the process of translating a virtual address during a storage
reference into the corresponding real address. The virtual address may be a primary virtual
address, secondary virtual address, AR-specified virtual address, or home virtual address.
These addresses are translated by means of the primary, the secondary, an AR-specified, or
the home address-space-control element, respectively.

After selection of the appropriate address-space-control element, the translation process is
the same for all of the four types of virtual address. An address-space-control element may
be a segment-table designation specifying a 2-GB address space, a region-table designation
specifying a 4-TB, 8-PB, or 16-EB space, or a real-space designation specifying a 16-EB
space. The letters K, M, G, T, P, and E represent kilo, 2¹0, mega, 2²0, giga, 2³0, tera, 240,
peta, 250, and exa, 260, respectively. A segment-table designation or region-table
designation causes translation to be performed by means of tables established by the
operating system in real or absolute storage. A real-space designation causes the virtual
address simply to be treated as a real address, without the use of tables in storage.

Is a dump 31-bit or 64-bit?
The easiest way to determine this is to use ISPF to browse the unformatted dump data set.
Chapter 10. z/Architecture and addressing 241

The header for each record in the dump will show DR1 for a system running in 31-bit mode
and DR2 for a 64-bit system dump. Figure 10-6 shows an ISPF browse of the dump data set.

Figure 10-6 64-bit architecture dump header record

A slightly more complex method for those familiar with IPCS is as follows:

� 31-bit (2 GB) MVS address spaces have architected Prefix Save Areas starting at x'0' in
low core. These start with the restart new PSW (which begins “040C...”). This is what you
would expect to see in low core of dumps from systems that are not running on the new
HW, or which are using the new 64-bit support hardware, but are not running in 64-bit
mode.

� If an MVS image has been IPLed to exploit 64-bit architecture, the low core will look
completely different. The PSA is now 2 KB in size, rather than 1 KB and the format of the
PSA starting from x'0' is completely different. Only a few of the fields are retained (for
compatibility purposes), for example, the CVT address, the current TCB address and
current ASCB address.

� To quickly identify whether a dump was taken from an image exploiting the 64-bit
architecture you can look at offset x'A3'. If the value x'01' is set, this dump comes from an
MVS image running in 64-bit mode. If x'00' is set, it is running in 31-bit mode. Currently no
other bits are used in this byte.

It must be said that apart from the historical significance, you will not see many non-64 bit
dumps in most current z/OS environments.

BROWSE APSG.SC48TS.DUMP1
 Command ===>

DR2 H
DR2 CV......................
DR2 CV...................]°.
DR2 CV...................]μ.
DR2 CV...................]^.
DR2 CV...................]{.
242 ABCs of z/OS System Programming Volume 8

Appendix A. IPCS tools and lab exercises

The interactive problem control system (IPCS) is a tool provided in MVS to aid in diagnosing
software failures. IPCS provides formatting and analysis support for dumps and traces
produced by MVS, other program products, and applications that run on MVS.

Dumps produced by MVS fall into two categories:

� Formatted dumps: SYSABEND and SYSUDUMP ABEND dumps and SNAP dumps. IPCS
cannot be used with formatted dumps.

� Unformatted dumps: SVC dumps, SYSMDUMP ABEND dumps, and stand-alone dumps.
IPCS formats and analyzes unformatted dumps.

When you submit unformatted dump data sets to IPCS, it simulates dynamic address
translation (DAT) and other storage management functions to recreate the system
environment at the time of the dump. IPCS reads the unformatted dump data and translates it
into words. For example, IPCS can identify the following:

� Jobs with error return codes

� Resource contention in the system

� Control block overlays

The information here should guide you in how to use IPCS and get information from a dump.
The dump can be downloaded.

A

© Copyright IBM Corp. 2007. All rights reserved. 243

A.1 IPCS lab exercise agenda

Figure A-1 IPCS and dump analysis

Introduction to IPCS and dumps
The following topics are described is this appendix:

� How the lab is presented

� How to get into IPCS and set up to view the first dump

� Other related sessions

IPCS commands
This appendix describes the use of the following IPCS commands:

� List Title/List SLIP trap

� Status worksheet

� Formatting the RTCT

� ST REGS

� SYSTRACE

� VERBX MTRACE

� Key fields in SUMMARY FORMAT

� ANALYZE RESOURCE

Introduction to IPCS and dumps

IPCS tools

Diagnosing loops and hangs

Downloading dumps using FTP

IPCS default settings

Commands to analyze dump
244 ABCs of z/OS System Programming Volume 8

Diagnosing loops and hangs using these tools
You can download the following dumps from the Redbooks site:

� Dump of a job using excessive CPU time

� Dump of a hung TSO user

� Dump of a hung job that is a contention problem

– Be warned there is a tremendous amount of material in this lab.

– The on-page title indicates exercises on that page.

– Each exercise details commands to be entered.

A flowchart available at the end of the presentation on diagnosing loops and hangs shows the
methodology used to diagnose the dumps. Consider the following when using the dumps:

� Everybody develops their own method over time.

� Use them as a starting point in understanding how to look at dumps.

How to download dumps using FTP to locate the Web material
The Web material associated with this book is available in softcopy on the Internet from the
IBM Redbooks Web server. The additional Web material that accompanies this book includes
the following files:

File name Description
SG246988.zip Zipped DUMPs - (13 DUMPs)

Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG246988

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select Additional materials and open the directory that corresponds with the book form
number, SG246988.

Text from the IBM Redbooks Web site
The directories on our FTP server contain additional materials such as code samples for
specific Redbooks. If there is additional media, such as a diskette or CD-ROM included with
the hardcopy book, it should be located in the directory with the same name as the IBM
Redbooks form number (SG24xxxx). Just click the specific directory and you will find the text
or binary files. Normally they are zipped to make file transfer faster and more reliable.

If your browser does not properly recognize the file extension, it may try to display the file
rather than present a download window. If this happens, right click the file and select Save
Link as or Save Target as, and your browser's normal download window will be presented.

Click here to get to the directory listing of additional materials to download.

(The save directory is one that you select.) The SG246988.zip file is now saved in a directory
on your workstation.

Attention: The dump data sets you are going to download are in tersed format.
Appendix A. IPCS tools and lab exercises 245

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
ftp://www.redbooks.ibm.com/redbooks/

How to use the downloaded material
Perform the following tasks:

1. Unzip the supplied SG246988.zip to a temporary directory. The dumps in this file are
tersed.

The dump data set names are shown in Figure A-2.

Figure A-2 The dump data set names that are downloaded

2. Use the following commands, shown in Figure A-3 on page 247, from the PC to upload the
dumps to your MVS system. In the following example, the c:\temp directory is used. You
need to specify where you saved the zip file if you did not use the c:\temp directory.

Data sets Tracks

ITSO.S2822.DUMP1.TERSE 90
ITSO.S2822.DUMP2.TERSE 75
ITSO.S2822.DUMP3.TERSE 90
ITSO.S2822.DUMP4.TERSE 75
ITSO.S2822.DUMP5.TERSE 705
ITSO.S2822.DUMP6.TERSE 45
ITSO.S2822.DUMP7.TERSE 75
ITSO.S2822.DUMP8.TERSE 90
ITSO.S2822.DUMP9.TERSE 135
ITSO.S2823.DUMP7.TERSE 915
ITSO.S2895.DUMP1.TERSE 255
ITSO.S2895.DUMP2.TERSE 255
ITSO.S2895.DUMP4.TERSE 120
246 ABCs of z/OS System Programming Volume 8

Figure A-3 Commands to FTP dumps to the MVS system

3. Once the dump data sets have been copied to the MVS system, they must be untersed. If
you do not have the terse utility as part of your TSO environment, see the following note.

cd c:\temp
ftp ‘your MVS system IP address’
C:\temp>ftp wtsc43.itso.ibm.com (our MVS system IP address)
Connected to wtsc43.itso.ibm.com.
220-FTP Server (user 'paulroge@us.ibm.com')
220 User (wtsc43.itso.ibm.com:(none)): ‘enter your MVS user ID
331 Send password please.
Password: ‘enter your password’
230-220-FTPMVS1 IBM FTP CS V1R7 at wtsc43.itso.ibm.com, 21:29:14 on 2007-02-26.
230-ROGERS is logged on. Working directory is "ROGERS.".
ftp> quote site blk=6144 lrecl=1024 recfm=fb tracks unit=sysallda primary=90
200 Site command was accepted
ftp> binary
200 Representation type is IMAGE.
ftp> put ITSO.S2822.DUMP1.TERSE
200 Port request OK.
125 Storing data set ITSO.
250 Transfer completed successfully.
ftp> quote site blk=6144 lrecl=1024 recfm=fb tracks unit=sysallda primary=75
ftp> put ITSO.S2822.DUMP2.TERSE
ftp> quote site blk=6144 lrecl=1024 recfm=fb tracks unit=sysallda primary=90
ftp> put ITSO.S2822.DUMP3.TERSE
ftp> quote site blk=6144 lrecl=1024 recfm=fb tracks unit=sysallda primary=75
ftp> put ITSO.S2822.DUMP4.TERSE
ftp> quote site blk=6144 lrecl=1024 recfm=fb tracks unit=sysallda primary=705
ftp> put ITSO.S2822.DUMP5.TERSE
ftp> quote site blk=6144 lrecl=1024 recfm=fb tracks unit=sysallda primary=45
ftp> put ITSO.S2822.DUMP6.TERSE
ftp> quote site blk=6144 lrecl=1024 recfm=fb tracks unit=sysallda primary=75
ftp> put ITSO.S2822.DUMP7.TERSE
ftp> quote site blk=6144 lrecl=1024 recfm=fb tracks unit=sysallda primary=90
ftp> put ITSO.S2822.DUMP8.TERSE
ftp> quote site blk=6144 lrecl=1024 recfm=fb tracks unit=sysallda primary=135
ftp> put ITSO.S2822.DUMP9.TERSE
ftp> quote site blk=6144 lrecl=1024 recfm=fb tracks unit=sysallda primary=915
ftp> put ITSO.S2823.DUMP7.TERSE
ftp> quote site blk=6144 lrecl=1024 recfm=fb tracks unit=sysallda primary=255
ftp> put ITSO.S2895.DUMP1.TERSE
ftp> quote site blk=6144 lrecl=1024 recfm=fb tracks unit=sysallda primary=255
ftp> put ITSO.S2895.DUMP2.TERSE
ftp> quote site blk=6144 lrecl=1024 recfm=fb tracks unit=sysallda primary=120
ftp> put ITSO.S2895.DUMP3.TERSE

Note: Decompress all data sets using TRSMAIN, which can be downloaded from:

� ftp://ftp.software.ibm.com/s390/mvs/tools/packlib/
Appendix A. IPCS tools and lab exercises 247

A.2 IPCS lab setup instructions

Figure A-4 IPCS PRIMARY OPTION MENU

IPCS primary options
At the IPCS primary options panel choose Option 0 for defaults, as shown in Figure A-4.
When you press Enter, you receive the panel with the default settings. Add the dump data set
name to the Source field to initialize the dump. Following are the IPCS default settings:

Scope ==> BOTH (LOCAL, GLOBAL, or BOTH)
Source ==> DSNAME('xxx.yyy.dump')
Address Space ==>
Message Routing ==> NOPRINT TERMINAL
Message Control ==> CONFIRM VERIFY FLAG(WARNING)
Display Content ==> NOMACHINE REMARK REQUEST NOSTORAGE SYMBOL

 ------------------- z/OS 01.08.00 IPCS PRIMARY OPTION MENU -------------------
 OPTION ===>

 0 DEFAULTS - Specify default dump and options * USERID - ROGERS
 1 BROWSE - Browse dump data set * DATE - 07/02/05
 2 ANALYSIS - Analyze dump contents * JULIAN - 07.036
 3 UTILITY - Perform utility functions * TIME - 11:52
 4 INVENTORY - Inventory of problem data * PREFIX - ROGERS
 5 SUBMIT - Submit problem analysis job to batch * TERMINAL- 3278T
 6 COMMAND - Enter subcommand, CLIST or REXX exec * PF KEYS - 24
 T TUTORIAL - Learn how to use the IPCS dialog ********************
 X EXIT - Terminate using log and list defaults

 Enter END command to terminate IPCS dialog

Choose Option 0 to set defaults

Specify processing to be performed by IPCS dialogs
and subcommands
248 ABCs of z/OS System Programming Volume 8

A.3 Commands to analyze dumps

Figure A-5 IPCS commands to analyze a dump

IP LIST TITLE
Use the IP LIST TITLE command to get a first guess as to what the dump represents. Look
for the following kinds of information:

� System generated dumps typically have a COMPID= and other system-generated
information, depending on the recovery routine that takes the dump.

� Console dumps have a title of whatever the user puts in COMM= as the dump title.

� Dumps taken as a result of a slip trap have a SLIP trap ID in them.

� Any program can issue an SDUMP macro and generate a title of its choosing. For IBM
products a dump title directory can be found in Chapter 10 of z/OS MVS Diagnosis:
Reference, GA22-7588.

The IP LIST TITLE command can be used to get the title of the dump, as follows:

IP LIST TITLE
TITLE
LIST 00000000 LITERAL LENGTH(X'58') CHARACTER
COMPON=BPX,COMPID=SCPX1,ISSUER=BPXMIPCE,MODULE=BPXFSCLS+16D6,ABEND=S00C4,REASON
=00000004

Lab exercise #1
Analyzing a SLIP trap dump.

Command to determine the dump type

IP LIST TITLE

Command to determine what the dump represents

IP LIST SLIPTRAP

Command to determine useful information

IP ST WORKSHEET
Appendix A. IPCS tools and lab exercises 249

Diagnosing the dump
Use the IPCS commands LIST TITLE and LIST SLIPTRAP to determine the type of dump
being analyzed.

IP ST Worksheet
This command displays the MVS Diagnostic Worksheet. During the initial use, it is possible
you may have to reply Y to get the displayed information the first time you use this command.

Issue the command to determine the useful information available in the dump. The following
information is displayed, for example:

Lab exercise #1:

� Enter IPCS.

� Specify the dump by typing =0 (zero) on the IPCS command line.

� Change the DSNAME to ITSO.S2822.DUMP1.

� Press Enter and proceed back to IPCS Option 6 (commands) by typing =6 on the
command line. Proceed with the exercise.

� The Problem: Diagnose a SLIP trap dump.

Questions:

1. Use the IP LIST TITLE command if you have reason to believe that a slip trap was used
to produce the dump and you want to know what was set. _________________

If a SLIP trap was used you will see the following type of output:

SLIP SET,C=0C4,A=SVCD

If a SLIPTRAP was not used you will get this message:

Symbol SLIPTRAP not found

2. Based on the title of the dump you can make a guess as to what type of dump this is.
Choose one of the following by putting a circle around it:

– STANDALONE DUMP

– A CONSOLE DUMP

– SLIP TRAP GENERATED DUMP

– PROGRAM GENERATED DUMP

3. The IP LIST SLIPTRAP command can be used to show the SLIP trap used to obtain
any dump, if a SLIP trap was used.

– Was a SLIP trap used? YES / NO (circle one)

– If a SLIP trap was used what was it? ____________________________________

Answers to questions: See Appendix A.15, “LIST TITLE and LIST SLIPTRAP - Answers”
on page 275.
250 ABCs of z/OS System Programming Volume 8

Figure A-6 Display of initial information in the MVS Diagnostic Worksheet

Figure A-7 IP ST WORKSHEET command example results

� Dump title

– Temptable: COMPON=BPX,COMPID=SCPX1,ISSUER=BPXMIPCE,....

� Date and time dump was taken:

– Date: 01/10/2002 Time: 21:23:40.675321 Local

� Original dump data set name (can be useful for reference with Systoles):

– Original dump data set: SYS0.DUMPSA6F.S00447

� System name (useful verification tool if more than one system exists)

– CVT SNAME (154) SA6F

� For SVCDUMPS the PSW and ASIDs in control at the time of the dump:

– HASID 0006 PASID 0006 SASID 0006 PSW 070C1000 82467428

� Number of CPUs and their numbers, which is useful for looking for loops:

– Alive CPU mask: C000 No. of active CPUs: 0002

• The mask shows CPU numbers 0-16 thus C=1100... or CPU0 and CPU1

MVS Diagnostic Worksheet
Dump Title: ECB WAIT
CPU Model 9672 Version 84 Serial no. 220A83 Address 02
Date: 07/22/2002 Time: 13:41:19.105252 Local
Original dump dataset: JJ.DUMP.PS01.D020722.T133948.S00007
Information at time of entry to SVCDUMP:
HASID 0089 PASID 0089 SASID 0089 PSW 070C1000 8BE3F9CC
CML ASCB address 00000000 Trace Table Control Header address 7F742000

Dump ID: 007
Error ID: N/A
SDWA address N/A

 SYSTEM RELATED DATA
 CVT SNAME (154) PS01 VERID (-18)

CUCB (64) 00FD00B0 PVTP (164) 00FF3548 GDA (230) 021C01A0
RTMCT (23C) 00F47448 ASMVT (2C0) 00FD6390 RCEP (490) 0167E468

CSD Available CPU mask: C000 Alive CPU mask: C000 No. of active CPUs: 0002
Appendix A. IPCS tools and lab exercises 251

Questions: Using the IP ST WORKSHEET command answer the following questions.
Refer to the previous page for information about what this information looks like in the
output.

1. What is the dump title? ______________________

2. Does this agree with the list title output you saw before? ____

3. How many CPs are online in this dump? _____

4. What is the original dump data set name?
__

5. When was the dump taken? ____________________

6. What was the name of the system this dump was taken on? _____________________

7. What was the primary address space (PASID) in control at the time of the dump?

8. The IP SELECT ALL command provides a list of all the ASID numbers and the
jobnames associated with them. Use this command to determine what the jobname is
for the PASID found above _________________

Answers to questions: See Appendix A.16, “IP ST WORKSHEET - Answers” on
page 275.
252 ABCs of z/OS System Programming Volume 8

A.4 The RTCT control block

Figure A-8 RTCT control block example (top part)

RTCT control block
The recovery termination control table (RTCT) contains information about what can be
expected to be found in the dump. The RTCT provides a communication area between the
various functions associated with dumping facilities, for SYSABEND, SYSMDUMP,
SYSUDUMP, and SVC dumps. It is used for coordination of the dump-related processes of
task and system recovery, the memory termination controller, installation- and
operator-defined dump requirements.

IP CBF command
The IP CBF RTCT command shows what ASIDs were requested under the SDAS heading,
as shown in Figure A-8.

The IP CBF RTCT+9C? STR(SDUMP) VIEW(FLAGS) command shows what options were
requested. This may be important to verify that the storage required to diagnose a problem
was requested. Of the flags formatted, the most useful often is the SDUSDATA flag. For
example, the output below would indicate that nucleus modules and LPA modules loaded at
the time of the dump should be viewable.

RRTCT: 00F50B20
 +0000 NAME..... RTCT SAP...... 2FD0BE00 SUP...... 00100000
 +000C SYD...... 4E800000 SDLA..... 0000 MECB..... 808DD1C8
 +0018 FASB..... 00000000 NAS...... 00000001 EEDA..... 024C5040
 +0024 SDDS..... 00000000 SDDC..... 0000 MTCT..... 0000
 +002C DSV...... 00BAED98 SSTK..... 00000000 ADGL..... 00C8F490
 +0038 ADG1..... 00C8F530 ADG2..... 00C8F540 ADG3..... 00C8F4AE
 +0044 ADG4..... 00C8F5C0 ADG5..... 80C8FF0C TABG..... 80CA90F0
 +0050 TABQ..... 80CA910E TABR..... 80CA9150 DSCA..... 00F93F28
 +005C DIND..... 0263C5B0 DIRS..... 0263C980 SDAT..... 0263CD50
 +0068 SMOD..... 024C8070 SCON..... 02436688 CPID..... 024B8100
 +0074 RPAR..... 0175CEF8 BPXP..... 00000000 TABO..... 00C83AC0
 +0080 SDSU..... 021E7000 SDPL..... 023D4E28 FMT...... 00000000
 +00A4 MLCK..... 00000001 MSRB..... 00FA2260 TEST..... 00000000
 +00B2 SEQ#..... 000B SDSW..... 0261B000 TDCB..... 00000000
 +00BC 00000000 00000000 00000000 00000000 00000000
 +00D0 00000000 00000000 00000000 SDWK..... 00BAEE68
 +00E0 ESEQ..... 0000 ECPU..... 0000 EASD..... 0000
 +00E6 ETIM..... 00000000 SAO...... 2FD0BE00 SUO...... 00100000
 +00F4 SYO...... 4E800000 SDO...... 0D000000 SDNA..... 01
 +00FF INDX..... 01 SDPR..... 00 BUFV..... 00000000
 +0108 SDF...... 6562 ZZZ3..... 0000
 ASTB
 SDAS SDF4 SDF5
 ---- ---- ----
 001 0023 A0 00
 002 0000 00 00
 003 0000 00 00
Appendix A. IPCS tools and lab exercises 253

Figure A-9 IP CBF RTCT+9C? STR(SDUMP) VIEW(FLAGS) command results

SDUMP_PL: 00F40458

 ==> FLAGS SET IN SDUFLAG0:
 DCB specified.
 Dump 4K buffer.
 HDR/HDRADR specified.
 ECB specified.
 BRANCH=YES specified.

 ==> FLAGS SET IN SDUFLAG1:
 SVC dump request.
 SYSMDUMP request.
TSO user extension is present.
 48+ byte parameter list.

 ==> FLAGS SET IN SDUSDATA:
 Dump all PSAs.
 Dump current PSA.
 Dump LPA mod. for RGN.
 Dump trace data.
 Dump CSA.
 Dump SWA.
 Dump summary dump data.
 Dump all nucleus.
 Dump all defaults.

Questions: The IP CBF RTCT command formats the RTCT control block, which gives
information such as what ASIDs where dumped (use the SDAS field).

1. Use the CBF RTCT command to find the ASID(s) included in this dump and list them
here (you can see an example of what the output may look like in Figure A-8 on
page 253). ______________________

Additionally, the RTCT contains information about what SDATA options were used. To
format this information, use the IP CBF RTCT+9C? STR(SDUMP) VIEW(FLAGS)
command. Try this command and determine:

2. Was LSQA requested on the dump? YES/NO (circle one).

3. Was RGN requested (shown as RGN-Private)? YES/NO (circle one).

The output will also indicate whether certain component exits receive control or not in
the SDUEXIT flag.

4. Look at these flags to determine if GRSQ was specified. YES/NO (circle one).

Answers to questions: See Appendix A.17, “Using the RTCT control block - Answers” on
page 275.
254 ABCs of z/OS System Programming Volume 8

A.5 The IP ST REGS command

Figure A-10 IP ST REGS command example

The IP ST REGS command
This command indicates what the registers were at the time of the dump for the following
kinds of dumps:

� For SLIP dumps - REGS at the time SLIP matched.

� For console dumps - typically all zeros.

� For abend dumps - they are theoretically the REGS at the time of the abend.

� For standalone dumps - use the IP CPU REGS command to get the REGS from each
CPU.

ST REGS example
These examples simply skim the surface of the wealth of technical information available with
the IP ST REGS output. See the example shown in Figure A-10.

The example output in Figure A-10 shows that the address in the PSW is X'0FE5CFC', the
ASID is X'1B', and the failing instruction is located in offset X'5FC' in the CSECT IEAVESVC
in the module IEANUC01 in the nucleus. You can now browse the dump at this location and
look at the specific failing instruction. You could also use the information about the registers
to find out more about the error if the address in the PSW does not point to the failing
instruction.

If the calling program is in AR mode, all addresses that it passes, whether they are in a GPR
or in a parameter list, must be ALET-qualified. A parameter list can be in an address space

CPU STATUS:
 PSW=070C1000 80FE5CFC (RUNNING IN PRIMARY, KEY 0, AMODE 31, DAT ON)
 DISABLED FOR PER
 ASID(X'001B') 00FE5CFC. IEANUC01.IEAVESVC+05FC IN READ ONLY NUCLEUS
 ASCB27 at F3FA00, JOB(LLA), for the home ASID
 ASXB27 at 9FDF00 for the home ASID. No block is dispatched
 HOME ASID: 001B PRIMARY ASID: 001B SECONDARY ASID: 001B
 GPR VALUES
 0-3 80000000 80FF0000 009FF5A0 00FC4E88
 4-7 009F8E88 009FD358 80FE5CD6 00F3FA00
 8-11 00000000 80FE579C 009FD418 7FFFE2C0
 12-15 7FFE0000 00006730 00FE6200 80014910
 ACCESS REGISTER VALUES
 0-3 7FFEA5CC 00000000 00000000 00000000
 4-7 00000000 00000000 00000000 00000000
 8-11 00000000 00000000 00000000 00000000
 12-15 00000000 00000000 00005F60 8210532A
ALET TRANSLATION
AR 00 Not translatable
AR 14 Not translatable
AR 15 Not translatable
 CONTROL REGISTER VALUES
 0-3 5EB1EE40 00A2007F 007CCDC0 8000001B
 4-7 0001001B 00C506C0 FE000000 00A2007F
 8-11 00000000 00000000 00000000 00000000
 12-15 0082E07B 00A2007F DF880C71 7FFE7008
Appendix A. IPCS tools and lab exercises 255

other than the calling program's primary address space or in a data space, but it cannot be in
the calling program's secondary address space.

Information from IP ST REGS
The following questions can all be answered with the IP ST REGS command.

Note: You can use the IP ST FAILDATA command instead as it formats the SDWA if it is
present. Generally it will give you a better overall picture but it may not always be there and
may not be the same as IP ST REGS due to recovery actions. In AR mode, as is the case
here, the General Purpose Registers will be qualified by the access registers (ARs). So to
look at the storage pointed to by a GPR, you need to also determine what address space it
refers to. An AR value of 00000000 means the Primary ASID; 00000001 means secondary
ASI, and 00000002 means home ASID. For example, in this dump the value in R9 =
15756F00 would be browsed in ASID(x'105').

Questions:

1. Was this dump in AR mode at the time of the failure? _____

2. What was the failing PSW address? _________

3. What ASID is this failing code executing in? _________

4. What was the failing TCB address? ________

Now using the address portion of the PSW, you want to get more information about the
module that was running. You also want to browse some of the register storage. Use
IPCS browse, IPCS Option 1, as shown in Figure A-4 on page 248.

5. When you browse the PSW address and back up with PF7, what eyecatcher do you
see? (Note: if an address begins with x'8' it must be changed to x'0'; if it begins with x'C'
change it to x'4')

6. Browsing the code 2 bytes before the PSW can you determine the reason for the
ABEND0C1? __

Answers to questions: See Appendix A.18, “Information from IP ST REGS - Answers” on
page 276.
256 ABCs of z/OS System Programming Volume 8

A.6 Browsing storage

Figure A-11 Browsing storage example

Browsing storage using IPCS Option 1 (Browse)
To browse storage, on the IPCS primary panel, shown in Figure A-4 on page 248, select
Option 1 or use =1 on any IPCS command line to obtain the panel shown in Figure A-12. Fill
in the dump data set name and the source and when you press Enter, the panel shown in
Figure A-11 is displayed.

Figure A-12 IPCS panel to enter dump defaults

------------------------- IPCS - ENTRY PANEL ---------------------------------

 CURRENT DEFAULTS:
 Source ==> DSNAME('ITSO.S2822.DUMP1')
 Address space ==> ASID(X'0023')

 OVERRIDE DEFAULTS: (defaults used for blank fields)
 Source ==> DSNAME('ITSO.S2822.DUMP1')
 Address space ==>
 Password ==>

 POINTER:
 Address ==> (blank to display pointer stack)
 Remark ==> (optional text)

DSNAME('SHARE.S2822.DUMP1A') POINTERS
--
ASID(X'0065') is the default address space
PTR Address Address space Data type
S0001 00000000 ASID(X'0065') AREA
 Remarks:
**************************** END OF POINTER STACK *************************
Fill in the 's' under pointer to select the address you'd like to browse or
fill in the 's' as shown to get to address zero where you can use the L
command to display the storage your interested in as demonstrated below:
ASID(X'0065') ADDRESS(00.) STORAGE
--
00000000 040C0000 813FF440 FFFFFFFF FFFFFFFF |a.4 |
00000010 00FC79B8 FFFFFFFF 070E0000 00000000 | ..`............. |
.
. (lines deleted for display purposes)
.
00000110.:011F.--Same as above
00000120.:01FF.--All bytes contain X'FF'
00000200 D7E2C140 00010041 00F44008 030A6008 | PSA4 ...-. |
00000210 00F83000 030E5000 00000000 00000000 | .8....&......... |
Command ===> L 07E00F04. asid(x'65') SCROLL ===> CSR
Appendix A. IPCS tools and lab exercises 257

Address space
If you are interested in a particular address space, then specify as shown in Figure A-12 on
page 257.

Browsing storage
Next, press Enter on the panel; Figure A-13 is displayed.

Figure A-13 Panel displayed after an Enter on the previous panel

Select storage location
Use the S line command, as shown in Figure A-11 on page 257, to choose a pointer from the
address pointer stack on the pointer panel. IPCS then uses the pointer to display storage that
is addressed by that pointer. The storage then displayed is shown in Figure A-11 on page 257
and Figure A-14. Notice that the storage selected in the example is at location 00000000.

Figure A-14 Storage displayed when issuing the S command

Browse the PSW address
To browse the PSW address, issue the IP ST REGS command to obtain the PSW address, as
shown in Figure A-15.

Figure A-15 IP ST REGS command displays the PSW address

DSNAME('ITSO.S2822.DUMP1') POINTERS --
Command ===> SCROLL ===> CSR
ASID(X'0023') is the default address space
PTR Address Address space Data type
S0001 00. ASID(X'0023') AREA
 Remarks:
**************************** END OF POINTER STACK *****************************

ASID(X'0023') ADDRESS(00.) STORAGE --
00000000 040C0000 813FF440 FFFFFFFF FFFFFFFF |a.4 |
00000010 00FC79B8 FFFFFFFF 070E0000 00000000 | ..`............. |
.
. (lines deleted for display purposes)
.
00000110.:011F.--Same as above
00000120.:01FF.--All bytes contain X'FF'
00000200 D7E2C140 00010041 00F44008 030A6008 | PSA4 ...-. |
00000210 00F83000 030E5000 00000000 00000000 | .8....&......... |
Command ===> L 07E00F04. asid(x'23') SCROLL ===> CSR

CPU STATUS:
PSW=070C0000 87E00F04
 (Running in PRIMARY, key 0, AMODE 31, DAT ON)
 DISABLED FOR PER
 ASID(X'0023') 07E00F04. LOOPER+4C IN EXTENDED PRIVATE
 ASID(X'0023') 07E00F04. AREA(Subpool251Key08)+0F04 IN EXTENDED PRIVATE
 ASCB101 at F9B400, JOB(IBMUSER3), for the home ASID
 ASXB101 at 5FDE88 and TCB101E at 5EC120 for the home ASID
 HOME ASID: 0023 PRIMARY ASID: 0023 SECONDARY ASID: 0023
258 ABCs of z/OS System Programming Volume 8

Select the PSW address
To browse the PSW address, insert an I in the previous address, as shown in Figure A-16;
this creates another line where you enter the PSW address, as shown in Figure A-17.

Figure A-16 Panel displayed after an Enter on previous panel

To select the PSW address, place an S in the PTR field of the PSW address.

Figure A-17 Selecting the PSW address to display the storage

Note: When you browse the PSW address, if an address begins with X'8' it must be
changed to X'0' if it begins with X'C', change it to X’4’.

DSNAME('ITSO.S2822.DUMP1') POINTERS --
Command ===> SCROLL ===> CSR
ASID(X'0023') is the default address space
PTR Address Address space Data type
I0001 00. ASID(X'0023') AREA
 Remarks:
**************************** END OF POINTER STACK *****************************

DSNAME('ITSO.S2822.DUMP1') POINTERS --
Command ===> SCROLL ===> CSR
ASID(X'0023') is the default address space
PTR Address Address space Data type
00001 00. ASID(X'0023') AREA
S0002 07E00F04. ASID(X'0023') AREA
 Remarks:

Note: When the PSW address storage is displayed, browsing the storage 2 bytes before
the PSW, you can you determine the reason for an ABEND0C1.
Appendix A. IPCS tools and lab exercises 259

A.7 IPCS SYSTRACE subcommand

Figure A-18 SYSTRACE subcommand parameters

System trace
System trace writes trace data in system trace tables in the trace address space. System
trace maintains a trace table for each processor. Obtain the trace data in a dump that included
option SDATA=TRT.

SYSTRACE subcommand
Use the SYSTRACE subcommand to format system trace entries for all address spaces. This
command is used to determine what else was happening in the system at the time of the
dump.

� Options:

– IP SYSTRACE ALL - formats all ASIDS

– IP SYSTRACE TIME(LOCAL) - converts the time to local time (readable)

– IP SYSTRACE ASID(x'nn') - formats only trace records associated with the requested
ASID

� If a WAIT entry is found in SYSTRACE, the system is not running 100% CPU.

� EXT 1005 entries for the same ASID may be indicative of a loop.

� The command only traces traceable events, for example, SVCs or PCs.

Chapter 8 of z/OS MVS Diagnosis: Tools and Service Aids, GA22-7589 has lots of details
about system trace.

{ SYSTRACE [TIME(HEX | GMT | LOCAL)]
 -------- Data Selection Parameters ---------------------
 [EXCLUDE(BR)]
 [EXCLUDE(MODE)]
 [START(mm/dd/yy,hh.mm.ss.dddddd)]
 [STOP(mm/dd/yy,hh.mm.ss.dddddd)]
 [CPU(cpu-address)]
 [TCB(TCB-list)]
 [TTCH(TTCH-address | LIST)]
 [WEB(WEB-list)]
 -------- Address Space Selection Parameters ---------------
 [ALL]
 [CURRENT]
 [ERROR]
 [TCBERROR]
 [ASIDLIST(asidlist)]
 [JOBLIST(joblist) | JOBNAME(joblist)]
 -------- SETDEF-Defined Parameters ------------------------
 Note: You can override the following SETDEF parameters.

 [ACTIVE | MAIN | STORAGE]
 [DSNAME(dsname) | DATASET(dsname)]
 [FILE(ddname) | DDNAME(ddname)]
 [PATH(path-name)]
 [FLAG(severity)]
 [PRINT | NOPRINT]
 [TERMINAL | NOTERMINAL]
 [TEST | NOTEST]
260 ABCs of z/OS System Programming Volume 8

SYSTRACE definitions
Figure A-19 shows the beginning columns of the system trace (SYSTRACE), shown in bold
text. An SSRV trace entry represents entry to a system service. The service can be entered
by a PC instruction or a branch.

Figure A-19 First columns of the system trace

The remainder of the system trace columns are in Figure A-20.

Figure A-20 Remaining columns of the system trace

The columns are as follows:

PR pr: Identifier of the processor that produced the TTE.

ASID home: Home address space identifier (ASID) associated with the TTE.

WU-ADDR wu-addr: Address of the task control block (TCB) for the current task or the
work element block (WEB).

IDENT The TTE identifier, as follows:

� DSP - Task dispatch

� SRB - Initial service request dispatch

� SSRB - Suspended service request dispatch

Note: For formatted dumps, system trace formats the system trace data and the system
prints it directly.

For unformatted dumps, use the IPCS SYSTRACE subcommand to format and print or
view the trace data in the dump.

Note: For every entry in the trace there are different mappings for the entry. Figure A-19 is
only an example of what an entry can contain.

PR ASID WU-ADDR- IDENT CD/D PSW----- ADDRESS- UNIQUE-1 UNIQUE-2 UNIQUE-3
UNIQUE-4/UNIQUE-5/UNIQUE-6

01-0001 00000000 WAIT
01-0028 01F5F200 SRB 070C0000 80FE1CD8 00000028 062817AC 86281780
 007FF510 00
01-0028 00000000 SSRV 78 80FE1E58 4060E552 00000058 007BEFA8
 00280000
01-0028 00000000 SSRV 78 80FE1E78 0000FD02 00000098 007F0780
 00280000

PSACLHS- PSALOCAL PASD SASD TIMESTAMP-RECORD CP
PSACLHSE

BF65FF0E4BA5E728 28
 00 0028 0028 BF65FF0E4EA51F68 28

Getmain BF65FF0E4EA58DE8 28

Getmain BF65FF0E4EA5A3E8 28
Appendix A. IPCS tools and lab exercises 261

� WAIT - Wait task dispatch

CD/D ssid

PSW-address Address of the PSW:

� dsp-new- psw: Program status word (PSW) to be dispatched

� srb-new- psw: PSW to receive control on the SRB dispatch

� ssrb-new- psw: PSW to receive control on the SSRB redispatch

UNIQUE-1-6 (6 values as follows:)

� gpr0----: General register 0

� gpr1----: General register 1

� psamodew: PSAMODEW field in the PSA

� safnasid: LCCASAFN field in the logical configuration communication
area (LCCA) and the related ASID

� flg-srb: SRBFLGS field from the SRB

� purgetcb: TCB (located in address space of the scheduler of the SRB)
that gets control if the SRB abends and percolates

PSACLHS One of the following:

� psaclhs-: String for the current lock held, from the PSACLHS field of the
PSA.

� psaclhs4: PSACLHS4 field of the PSA

� srbhlhi-: SRBHLHI field in the SRB

This field contains descriptive text for some SVC, SSRV, and PC trace entries.
The descriptive text does not appear in SNAP, SYSUDUMP, or SYSABEND
output.

PSALOCAL psalocal: Locally locked address space indicator, from the PSALOCAL field
of the PSA. This field will contain descriptive text for some SVC, SSRV, and
PC trace entries. The descriptive text will not appear in SNAP, SYSUDUMP,
or SYSABEND output.

PASD cpsd: Primary ASID (PASID) at trace entry. This field will contain descriptive
text for some SVC, SSRV, and PC trace entries. The descriptive text will not
appear in SNAP, SYSUDUMP, or SYSABEND output.

SASD sasd: Secondary ASID (SASID) at trace entry. This field will contain
descriptive text for some SVC, SSRV, and PC trace entries. The descriptive
text will not appear in SNAP, SYSUDUMP, or SYSABEND output.

TIMESTAMP timestamp-------: Time-of-day (TOD) clock value when system trace created
the trace entry. The value is in the same format as the time stamp on logrec
data set records.

CP The CP column contains 2 hex digits of the processor model-dependent
information, which is intended to identify the physical CP that made the trace
entry. CP is only provided when formatting SYSTRACE under IPCS. CP is
not provided for SYSUDUMP, SYSABEND, or SNAP.
262 ABCs of z/OS System Programming Volume 8

Questions:

1. By using IP SYSTRACE ALL and looking in the output for the word WAIT you can find
out if all CPUs were busy at the time of the dump. In this dump were all CPUs busy?
YES/NO (circle one).

2. EXT 1005 entries and CLKC entries are indicative of possible loops, Use the FIND (F)
command in the output to see if there are any EXT or CLKC entries.

3. What address spaces had EXT 1005 entries (hint: search to BOTTOM of the output
using F 'EXT')? ____________________

4. A loop would most likely be indicated by EXT entries with the same PSW addresses
over and over. Do the address spaces you found above appear to be in a loop?

5. Use the IP SYSTRACE TIME(LOCAL) ASID(x'23') command to determine what the last
time stamp in the trace is. (Use the BOTTOM command then you may need to scroll
right with PF11) ________________

6. You saw previously from the IP CBF RTCT command that ASID X'23' was dumped.
What is the last TCB that was active in the trace table for this ASID? You can use the IP
SYSTRACE ASID(X'23') TIME(LOCAL) command and then go to the BOTTOM to find
this out. _____________

7. Sometimes it is useful to look for abends that show up in SYSTRACE in the output from
above. Use the F '*R' PREV command to find the last *RCVY entry that shows entry to
recovery. Press PF7 to find the *PGM 001 entry that appears above that shows the
0C1. What was the PSW address that the 0C1 occurred at from looking at the *PGM
001 entry? _______________________

Note: A PGM trace entry is for a program interrupt.

Answers to questions: See Appendix A.19, “IP SYSTRACE - Answers” on page 276.
Appendix A. IPCS tools and lab exercises 263

A.8 IPCS VERBX MTRACE subcommand

Figure A-21 VERBX MTRACE subcommand

VERBX MTRACE subcommand
This command displays the following:

� The master trace table entries for the dumped system. This table is a wraparound data
area that holds the most recently issued console messages in a first-in, first-out order.

� The NIP hard-copy message buffer.

� The branch entry and NIP time messages on the delayed issue queue.

This trace gives you a snapshot of what is taking place just before the dump in the system log
and is useful to see if a job was started, a message was issued or a command was issued
just prior to the problem.

In the example, shown in Figure A-22 on page 265, the operator apparently was trying to
capture a console dump and entered DUMP COMM(DUMP OF JOE0400S) instead of the
correct syntax, which would have been DUMP COMM=(DUMP OF JOE0400S). Note also
that this is a JES2 log. A JES3 log looks quite different.

Provides a snapshot of what happens just before the
dump in the system log, as follows:

If a job was started

If a message was issued

If a command was issued just prior to the problem

13:41:16.48 STC00761 00000210 DUMP COMM(DUMP OF JOEO400S)
13:41:16.88 P1 00000010 IEE311I DUMP PARAMETER MISSING
13:41:16.89 P1 00000010 IEE711I SYSTEM DUMP NOT TAKEN. DUMP SPECIFICATION NOT VALID
13:41:18.27 P1 S8738 00000014 B092I- VSAM 01/30/98 08.40 STARTED
13:41:18.27 P1 S8738 00000014 B092I- KSDS 01/30/98 08.41 STARTED
13:41:18.27 P1 S8738 00000014 B054I- SESSION LIMIT SET TO 2048
13:41:18.29 P1 S8738 00000014 B015I- VTAMAPPL VERSION 6.1 TAPE LC2681 INITIALIZATION
complete

Sample output:
264 ABCs of z/OS System Programming Volume 8

Figure A-22 Sample MTRACE output

13:41:16.48 STC00761 00000210 DUMP COMM(DUMP OF JOEO400S)
13:41:16.88 P1 00000010 IEE311I DUMP PARAMETER MISSING
13:41:16.89 P1 00000010 IEE711I SYSTEM DUMP NOT TAKEN. DUMP SPECIFICATION NOT VALID
13:41:18.27 P1 S8738 00000014 B092I- VSAM 01/30/98 08.40 STARTED
13:41:18.27 P1 S8738 00000014 B092I- KSDS 01/30/98 08.41 STARTED
13:41:18.27 P1 S8738 00000014 B054I- SESSION LIMIT SET TO 2048
13:41:18.29 P1 S8738 00000014 B015I- VTAMAPPL VERSION 6.1 TAPE LC2681 INITIALIZATION complete

Questions: The D GRS,C console command can be used to determine whether there is
any resource contention on the active system. Looking at the IP VERBX MTRACE output,
determine whether there were any GRS displays recently.

1. If so, what resource was the contention on? ____________

Use F ‘GRS,C’ to find the message below and fill in the blanks in the message below:

– ISG343I 18.36.16 GRS STATUS

– S=SYSTEMS ________________ _________________

The first blank represents the major name; the second represents the minor
resource name.

Answers to questions: See Appendix A.20, “IP VERBX MTRACE - Answers” on
page 277.
Appendix A. IPCS tools and lab exercises 265

A.9 IP SUMMARY FORMAT subcommand

Figure A-23 SUMMARY subcommand and parameters

The SUMMARY subcommand
Use the SUMMARY subcommand to display or print dump data associated with one or more
specified address spaces.

SUMMARY produces different diagnostic reports depending on the report type parameter,
FORMAT, KEYFIELD, JOBSUMMARY, and TCBSUMMARY, and the address space selection
parameters, ALL, CURRENT, ERROR, TCBERROR, ASIDLIST, and JOBLIST. Specify
parameters to selectively display the information you want to see.

Question information: The IP SUMM FORMAT ASID(x’nn’) command will format lots of
data about the specified address space. In this lab you are interested in the following fields:

ASCBDPH Use the command F DPH from the top in the output. This is the dispatching
priority of the address space. The range is 00-FF with FF being the highest.

RBOPSW This field is contained in the RB under the TCB of interest. It can be found by
going to the BOTTOM and issuing the find command F 'TCB: 00nnnnnn'
PREV, then F ACTIVE to find the most recently active RB. This field shows
the last running PSW address at the time the dump was taken or the address
where the TCB entered a wait.

RBLINK This field is found the same way as the RBOPSW above. The first byte (two
digits) will indicate that RB (task for the first RB) is in a WAIT... 00 means not
waiting, >00 (typically 01) means waiting. See RBOPSW to determine where
it entered the wait.

Use the SUMMARY subcommand to:

Display or print dump data associated with one or
more specified address spaces.

Specify different parameters to selectively display
the information you want to see.

SUMMARY produces different diagnostic reports
depending on the report type parameter:

 FORMAT, KEYFIELD, JOBSUMMARY, or
TCBSUMMARY,

Address space selection parameters

ALL, CURRENT, ERROR, TCBERROR, ASIDLIST,
or JOBLIST
266 ABCs of z/OS System Programming Volume 8

The result of the IP SUMMARY FORMAT ASID(x’7’) followed by a F ‘DPH’ shows GRS has
dispatching priority of X'FF' as expected, as shown in Figure A-24.

Figure A-24 Result on the FIND command, F ‘DPH’

Figure A-25 is the result of issuing the command to get to the bottom (BOTTOM command
and press F8) followed by the F ‘ACTIVE’ PREV command to locate the top RB of the last
task in the address space. This task is in a WAIT, which was issued at 87E44BD8.

Figure A-25 IP SUMM FORMAT

SUMM FORMAT subcommand questions

JOB GRS
 SELECTED BY: ASIDLIST

ASCB: 00F42D00
 +0000 ASCB..... ASCB FWDP..... 00FA7E80 BWDP..... 00F42E80
 LTCS..... 00000000 SVRB..... 005FD598 SYNC..... 000000B9
 +0018 IOSP..... 00000000 R01C..... 0000 WQID..... 0000
 SAWQ..... 00000000 ASID..... 0007 R026..... 0000
 +0028 LL5...... 00 HLHI..... 03 DPH...... 00FF
 TCBE..... 00000000 LDA...... 7FF12EA0 RSMF..... C0

Note: The WLIC field shows 00020001, which means the last SVC this task issued was
SVC 1 (Wait). The first byte in the LINK field shows 01 if we are in a wait scenario.

ACTIVE RBS

 PRB: 005F51D8
-0020 XSB...... 7FFFEE10 FLAGS2... 80 RTPSW1... 00000000 00000000 RTPSW2... 00000000 2436D000
-0008 FLAGS1... 42800008 WLIC..... 00020001
+0000 RSV...... 00000000 00000000 SZSTAB... 00110083 CDE...... 005F5638 OPSW..... 070C1000 87E44BD8
+0018 SQE...... 00000000 LINK..... 015CCE88
+0020 GPR0-3... 00000002 005FF710 005DE244 00000000
+0030 GPR4-7... 00000048 00000000 00FC3CC0 005DE000
+0040 GPR8-11.. 005F9640 07E1E7B5 07E1D7B6 07E1C7B7
+0050 GPR12-15. 07E1B7B8 00016C28 00000001 005F9640
+0060 RSV...... C9E2C7E6 C4D9E5D9

Questions:

1. Use the IP SUMM FORMAT ASID(X'23') command to determine what the dispatching
priority of ASID x'23' is (Use the F ‘DPH’ command to find the dispatching priority):

Use the F 'TCB: 008D1E88' command to find the TCB that took the ABEND0C1, then
issue F 'ACTIVE' to find the top RB....

2. From that RB, what are the values of OPSW _______________________

3. And the first byte of LINK ____

4. Is this TCB in a detected wait (hint: If RBLINK is >00 then TCB is in a wait, which was
entered at the OPSW address recorded earlier)? YES/NO (circle one).

Answers to questions: See Appendix A.21, “SUMMARY FORMAT - Answers” on
page 277.
Appendix A. IPCS tools and lab exercises 267

A.10 The IP ANALYZE RESOURCE subcommand

Figure A-26 IPCS ANALYZE subcommand

ANALYZE subcommand
Use the ANALYZE subcommand to gather contention information from component analysis
exits and format the data to show where contention exists in the dump. ANALYZE obtains
contention information for I/O, ENQs, suspend locks, allocatable devices, real frames, global
resource serialization latches, and other resources.

The command is used to detect resource contention. Specifying GRSQ in the SDATA options
makes the information more reliable. Generally the most useful information is found at the
bottom of this report. The top is generally I/O device contention and isn't usually relevant.
Figure A-27 on page 269 is an example of some contention, as follows:

� NAME=MAJOR=IGDCDSXS MINOR=SYSD.DFSMS.COMMDS is the resource name in
contention.

� Note that the scope of the resource name is scope=systems.

Contention analysis
IPCS gathers contention information once for each dump. ANALYZE invokes each ANALYZE
exit routine specified by parmlib members embedded in the BLSCECT parmlib member.
When contention information has not been previously gathered, IPCS issues this message:

BLS01000I Contention data initialization is in progress

The amount of time required to gather contention information depends on the size of the
dump, how many address spaces it contains, the number of I/O devices, and the amount of

ANALYZE produces different diagnostic reports
depending on the report type parameter

EXCEPTION displays contention information when
a unit of work holds at least one resource for which
contention exists and that unit of work is not waiting
for another resource

RESOURCE displays contention information
organized by resource name

ASID displays contention information organized by
ASID

ALL displays all contention information
268 ABCs of z/OS System Programming Volume 8

contention in the dump. IPCS recommends that you run the ANALYZE subcommand in the
background as part of a preliminary screening report.

In the event that no contention information is detected, IPCS issues:

BLS01002I No resource contention detected. Undetected contention is possible.

Figure A-27 IP ANALYZE RESOURCE subcommand

RESOURCE #0011:
 NAME=MAJOR=IGDCDSXS MINOR=SYSD.DFSMS.COMMDS
SCOPE=SYSTEMS
RESOURCE #0011 IS HELD BY:

JOBNAME=SMS ASID=0025 TCB=009EB0F0 SYSNAME=CM01
RESOURCE #0011 IS REQUIRED BY:

JOBNAME=SMS ASID=0026 TCB=009EB0F0 SYSNAME=PR02
JOBNAME=SMS ASID=0026 TCB=009EB0F0 SYSNAME=PR03
JOBNAME=SMS ASID=0028 TCB=009EC660 SYSNAME=SP02
JOBNAME=SMS ASID=0027 TCB=009EB0F0 SYSNAME=TS01

Note: Holders and waiters are identified in the output. ASID and TCB (where appropriate)
are provided and whether a scope=systems resource is the holding system name.

Questions:

1. Use the IP ANALYZE RESOURCE command to identify any contention that exists in the
dump. Record the resource name represented by RESOURCE #0001 (found at the
bottom of the report) _____________________________

2. How many address spaces are waiting for this resource: ______

Answers to questions: See Appendix A.22, “ANALYZE RESOURCE - Answers” on
page 277.

Note: The ANALYZE RESOURCE output matches that of the D GRS,C command seen
earlier.
Appendix A. IPCS tools and lab exercises 269

A.11 Diagnosing excessive CPU time

Diagnosing the dump
To diagnosis this dump, the questions that follow will walk you through the relevant questions
that will lead you to the diagnosis.

The CBFORMAT (CBF) command
Knowing that an SVC 6B is a modeset, we conclude that this code is in a loop. In this case the
program storage is dumped, so it is not possible to browse the code. This is because
RGN-private was requested. This can be verified with the following command:

IPCS CBF RTCT+9C? STR(SDUMP) VIEW(FLAGS)

Figure A-28 on page 281 shows a flowchart that describes the process used to diagnose this
problem.

Lab exercise #2:

� Switch dumps by typing =0 (zero) on the IPCS command line.

� Change the DSNAME to ITSO.S2822.DUMP2.

� Press Enter and proceed back to IPCS Option 6 (commands) by typing =6 on the
command line. Proceed with the exercise.

� The Problem: A customer reports that jobname EXSCPU1 is using excessive CPU
time.

Questions:

1. Issue IP SYSTRACE ALL. Does IP SYSTRACE ALL show SVC entries? ______

2. Issue IP SELECT ALL. What is the ASID of EXSCPU1? ____________

3. Issue IP SYSTRACE ASID(X'nn') where nn is the ASID number found above. Does this
show a pattern? _________________

Answers to questions: See Appendix A.23, “Diagnosing excessive CPU time - Answers”
on page 278.
270 ABCs of z/OS System Programming Volume 8

A.12 TSO user hung

Diagnosing the dump
To diagnose this dump, the questions that follow will walk you through the relevant questions
that will lead you to the diagnosis.

Lab exercise #3:

� Switch dumps by typing =0 (zero) on the IPCS command line.

� Change the DSNAME to ITSO.S2822.DUMP3.

� Press Enter and proceed back to IPCS Option 6 (commands) by typing =6 on the
command line. Proceed with the exercise.

� The Problem: TSO user ID IBMUSER seems to be hung.

Questions:

1. Issue IP SYSTRACE ALL. Are there waits found in SYSTRACE ALL? ___________

2. Is there an obvious pattern in the output above? __________________

3. What address space number is IBMUSER? (IP SELECT ALL) ____________

4. Are there any entries in SYSTRACE for this ASID? (IP SYSTRACE ASID(X'nn'))

5. Identify some other ASIDs that are running in IP SYSTRACE ALL. What are they?

6. Check the dispatching priority of these address spaces and compare them with the
dispatching priority of IBMUSER (recall that the dispatching priority can be found by
issuing IP SUMM FORMAT ASID(x'nn'), then F ‘DPH’):

ASID 22 DPH? ASID 20 DPH? ASID 1F DPH? ________________

7. Based on the above information we may assume that ASID x'1B' does not have a high
enough dispatching priority. However, the only other non-system address space that
was found was x'20', so perhaps we should try IP SYSTRACE ASID(x'20') ALL. Now do
you see a pattern? _______________________

8. What diagnosis would you make based on this information?
__

Answers to questions: See Appendix A.24, “TSO user hung - Answers” on page 278.
Appendix A. IPCS tools and lab exercises 271

A.13 Job IBMUSER3 hung (contention problem?)

Diagnosing the dump
To diagnose this dump, the questions that follow will walk you through the relevant questions
that will lead you to the diagnosis.

Lab exercise #4:

� Switch dumps by typing =0 (zero) on the IPCS command line.

� Change the DSNAME to ITSO.S2822.DUMP4. Use any ASID from (0 to 20).

� Press Enter and proceed back to IPCS Option 6 (commands) by typing =6 on the
command line. Proceed with the exercise.

� The Problem: Job IBMUSER3 appears to be hung.

Questions:

1. Use IP SYSTRACE ALL to determine if there are waits. YES/NO.

2. What ASID number is IBMUSER3 (IP SELECT ALL)? _________

3. Issue IP SYSTRACE ASID(X'nn'). Is there a pattern? YES/NO.

4. Are there any entries at all in SYSTRACE for ASID(X'nn')? YES/NO.

5. Issue IP ANALYZE RESOURCE, go to the BOTTOM and look for contention. Is
IBMUSER3 waiting on an ENQUEUE? If so, what ASID is holding it? __________

6. Calling the ASID of the holder yy, is there a pattern for IP SYSTRACE ASID(X'yy')?
YES/NO.

7. Are there any entries at all for ASID(yy)? YES/NO.

8. Is there any indication in IP ANALYZE RESOURCE that ASID yy is waiting for another
resource? YES/NO.

9. Note the TCB address holding the enqueue. ______________

10.Issue IP SUMM FORMAT ASID(x'yy') and look for the status of the top RB of TCB found
above. Issue F 'TCB: 00zzzzzz' where zzzzzz is the address found above. Then issue F
‘ACTIVE’.

11.What is the value of the first byte of the link field? ____

12.Does this indicate that the task is in a wait? See Figure A-24 on page 267. YES/NO.

13.In this case the next course of action would be to find out why the program issued a wait
while holding the enqueue. However, once again the program was not dumped (RGN
not requested). So try looking in IP VERBX MTRACE to see if you can find the answer
to this problem. In the output go to the BOTTOM and find STARTJQ (ASID x'20'
corresponds to STARTJQ as shown in IP SELECT ALL) to see what the job did after it
started).

14.Is there anything that could be done on the console to relieve this problem?

Answers to questions: See Appendix A.25, “Job IBMUSER3 hung (contention problem?)
- Answers” on page 278.
272 ABCs of z/OS System Programming Volume 8

A.14 A standalone dump example

Diagnosing the dump
To diagnose this dump, the questions that follow will walk you through the relevant questions
that will lead you to the diagnosis.

Lab exercise #5:

� Switch dumps by typing =0 (zero) on the IPCS command line.

� Change the DSNAME to ITSO.S2822.DUMP5. Use any ASID from (0 to 20).

� Press Enter and proceed back to IPCS Option 6 (commands) by typing =6 on the
command line. Proceed with the exercise.

� The Problem: The system crashed, ending up in a non-restartable wait state. A
standalone dump was taken.
Appendix A. IPCS tools and lab exercises 273

Conclusion
You have now completed the lab exercises. If you wish to go back and use any of the dumps
to try some other IPCS items you may have learned, feel free to do so.

Remember that the dumps used are available via FTP for download as stated in the
introduction.

The answers to the labs are on the following pages.

Questions:

1. First issue IP ST WORKSHEET and note the title:

2. Page down and look at the PSW address. For a wait state the last three digits of the
PSW address will contain the wait state code and the two digits proceeding that will be
the reason code. What was the WAITSTATE and reason code?

3. If you look up the meaning of this wait state you will note that it means the FRR stack is
corrupted. The FRR stacks are located at PSA+380. Since the PSA starts at virtual
address 0 for each processor we can simply browse address 380 to see what's there.
Note if there were more than one CPU we'd need to browse each PSA separately as
they are processor dependent. So on the L (locate) command use the keyword CP(1).
Browse the storage address 00000380, using the IPCS browse function and write down
the eyecatcher that appears there:

4. Try issuing the command L 380. cpu(0) while still looking at storage. What does this
indicate? _______________________________________

The next step is to find out what caused the overlay you found above. To do that we can
look in logdata, MTRACE or SYSTRACE in the hope that whatever overlaid the storage left
some “footprints.” In this case let us start with IP VERBX MTRACE. Whatever did this
overlay would have been one of the last things running before the wait state (the system
would not survive long from an overlay of this magnitude).

5. What was the last entry in VERBX MTRACE?

6. Use IP SELECT ALL to find the ASID of the item found above. _____________

7. Use IP SYSTRACE ALL. What was the last SVC issued?

SVC 6B is a modeset SVC that will allow a program to be in supervisor state, allowing it to
write to locations such as PSA+380.

Browse the PSW shown in the SYSTRACE entry found above. The PSW address is
25400E46. Page back (and sometimes you may have to page forward and then page
back to get the correct address, which is 25400DDA) and record the eyecatcher found
there:

Answers to questions: See Appendix A.26, “A standalone dump example - Answers” on
page 279.
274 ABCs of z/OS System Programming Volume 8

A.15 LIST TITLE and LIST SLIPTRAP - Answers
1. IP LIST TITLE can be used to get the title of the dump.

– Record the tile here:___SLIP DUMP ID=0002_______

2. Based on the title of the dump you can make a guess as to what type of dump this is. Is
this a (answers are highlighted):

– STANDALONE DUMP

– A CONSOLE DUMP

– SLIP TRAP GENERATED DUMP

– PROGRAM GENERATED DUMP

3. IP LIST SLIPTRAP can be used to show the slip trap used to obtain any dump, if a slip
trap was used.

– Was a slip trap used? YES/ NO (circle one)

– If a slip trap was used, what was it?

• ___SLIP SET,
C=0C1,A=SVCD,SDATA=(GRSQ,XESDATA,COUPLE,NUC,LPA,LSQA,RGN,TRT,S
UM,SQA,PSA)___________________________

A.16 IP ST WORKSHEET - Answers
Using the IP ST WORKSHEET command answer the following questions. Refer to the
previous page for information on what this information looks like in the output.

1. What is the dump title? __SLIP DUMP ID=0002________

2. Does this agree with the list title output you saw before? _YES_

3. How many CPs are online in this dump? __2__

4. What is the original dump data set name?

__LOWRYE.SHARE.D00006 ___

5. When was the dump taken? _ 02/13/2006 18:41:12.217103 _____

6. What was the name of the system this dump was taken on? __SY1___

7. What was the primary address space (PASID) in control at the time of the dump? __23__

8. The IP SELECT ALL command provides a list of all the ASID numbers and the jobnames
associated with them. Use this command to determine what the jobname is for the PASID
found above __BADPROG2__

A.17 Using the RTCT control block - Answers
IP CBF RTCT formats the RTCT control block, which gives information such as what ASIDs
where dumped.

Note: You could use the above information to prove that everyone in this lab session is
using a copy of the same dump.
Appendix A. IPCS tools and lab exercises 275

1. Use the CBF RTCT command to find the ASID(s) included in this dump and list them
here:

_____23_____

Additionally, the RTCT contains information on what SDATA options were used. To format this
information, use the IP CBF RTCT+9C? STR(SDUMP) VIEW(FLAGS) command. Try this
command and determine:

2. Was LSQA requested on the dump? YES/NO

3. Was RGN requested (shown as RGN-Private)? YES/NO

The output above will also indicate whether certain component exits receive control or not in
the SDUEXIT flag.

4. Look at these flags to determine if GRSQ was specified. YES/NO

A.18 Information from IP ST REGS - Answers
The following questions can all be answered by using the IP ST REGS command (as before,
refer to the previous page for an example):

1. Was this dump in AR mode at the time of the failure? _NO_ (AR mode not indicated and
HASID=PASID=SASID)

2. What was the failing PSW address? _25400F1C _

3. What ASID is this failing code executing in? ___23__(PASID)

4. What was the failing TCB address? __8D1E88__

Now using the address portion of the PSW, you want to get more information about the
module that was running. You also want to browse some of the register storage. Use IPCS
browse IPCS Option 1.

5. When you browse the PSW address and back up with PF7, what eyecatcher do you see?
__COMPLETED ENQ REPLY TO CONTINUE__

6. Browsing the code 2 bytes before the PSW, can you determine the reason for the
ABEND0C1?

– _Two bytes before the PSW address contains x'0000' which is an invalid opcode and
will result in an ABEND0C1__.

A.19 IP SYSTRACE - Answers
1. By using IP SYSTRACE ALL and looking in the output for the word WAIT you can find out

whether all CPUs were busy at the time of the dump. In this dump were all CPUs busy?
YES/NO (highlighted)

2. EXT 1005 entries and CLCK entries are indicative of possible loops, Use the FIND (F)
command in the output to see if there are any EXT or CLCK entries.

3. What address spaces had EXT 1005 entries (hint: search to BOTTOM of output using F
'EXT')? __1, 9, and 23____

4. A loop would most likely be indicated by EXT entries with the same PSW addresses over
and over. Do the address spaces you found above appear to be in a loop? __No__
276 ABCs of z/OS System Programming Volume 8

5. Use the IP SYSTRACE TIME(LOCAL) ASID(x'23') and determine what the last time stamp
in the trace is: (use the BOTTOM command; then you may need to scroll right with PF11.)
_18:41:12.138602__

6. You saw previously from the IP CBF RTCT command that ASID X'23' was dumped. What
is the last TCB that was active in the trace table for this ASID? You can use the IP
SYSTRACE ASID(X'23') TIME(LOCAL) command and then BOTTOM to find this out.
008D1E88

7. Sometimes it is useful to look for ABENDs that show up in SYSTRACE in the output from
above. Use the F '*R' PREV command to find the last *RCVY entry that shows entry to
recovery. Issue PF7 to find The *PGM 001 entry that appears above that shows the 0C1.
What was the PSW address that the 0C1 occurred at from looking at the *PGM 001 entry?
__A5400F1C__ or 25400F1C

Note: A PGM trace entry is for a program interrupt.

A.20 IP VERBX MTRACE - Answers
The D GRS,C console command can be used to determine whether there is any resource
contention on the active system. Looking at IP VERBX MTRACE output, determine if there
were any GRS displays recently.

1. If so, what resource was the contention on? (Use F 'GRS,C' to find the message below
and fill in the blanks in the message):

ISG343I 18.36.16 GRS STATUS

S=SYSTEMS SYSZTEST CLSSHR01____

The first blank represents the major name; the second represents the minor resource
name.

A.21 SUMMARY FORMAT - Answers
1. Use the IP SUMM FORMAT ASID(X'23') command to determine what the dispatching

priority of ASID x'23' is. (Use the F ‘DPH’ command to find the dispatching priority):
___D0____

Use F 'TCB: 008D1E88' command to find the TCB that took the ABEND0C1, then issue F
'ACTIVE' to find the top RB.

2. From that RB, what are the values of OPSW? ___070C0000 A5400F1C __________

3. And the first byte of LINK _00_

4. Is this TCB in a detected wait (hint: If RBLINK is >00, then TCB is in a wait, which was
entered at the OPSW address recorded earlier)? YES/NO (highlighted)

A.22 ANALYZE RESOURCE - Answers
1. Use IP ANALYZE RESOURCE to identify any contention in the dump. Record the

resource name represented by RESOURCE #0001 (found at the bottom of the report)
____NAME=MAJOR=SYSZTEST MINOR=CLSSHR01_____

2. How many address spaces are waiting for this resource: ___2___
Appendix A. IPCS tools and lab exercises 277

A.23 Diagnosing excessive CPU time - Answers
1. Issue IP SYSTRACE ALL. Does IP SYSTRACE ALL show SVC entries?__Yes__

2. Issue IP SELECT ALL. What is the ASID of EXSCPU1? ____1D___

3. Issue IP SYSTRACE ASID(X'nn'), where nn is the ASID number found above. Does this
show a pattern? _____Yes_________

A.24 TSO user hung - Answers
1. Issue IP SYSTRACE ALL. Are there waits in SYSTRACE all? ___NO____

2. Is there an obvious pattern in the output above? _NO (Not obvious, although as seen later
one does exist)___

3. What address space number is IBMUSER? (IP SELECT ALL) ____1B______

4. Are there any entries in SYSTRACE for this ASID? (IP SYSTRACE ASID(X'nn')
___NO____________

5. Identify some other ASIDs that are running in IP SYSTRACE ALL. What are they _Any of
the following 1, 20, 1F, 5, 9_________

6. Check the dispatching priority of these address spaces and compare them with the
dispatching priority of IBMUSER (recall that the dispatching priority can be found by
issuing IP SUMM FORMAT ASID(x'nn'), then F ‘DPH’:
ASID=22 DPH=C1, __ASID=1 DPH=FF__ASID=20 DPH=FE__, ASID=1F DPH=FE
ASID=5 DPH=FF___ASID=9 DPH=FF__

7. Based on the above information we may assume that ASID x'22' does not have a high
enough dispatching priority. However, the only other non-system address spaces that
were found are X'20' and X’1F’, so perhaps we should try IP SYSTRACE ASID(x'20') ALL.
Now do you see a pattern? _YES (SVC and SVCR)__

8. What diagnosis would you make based on this information? _Loop in ASID X'20' and
ASID X’1F’, which run in a higher dispatching priority than ASID X'22' (IBMUSER)
resulting in IBMUSER getting starved for CPU._

A.25 Job IBMUSER3 hung (contention problem?) - Answers
1. Use IP SYSTRACE ALL to determine if there are waits. Yes/No

2. What ASID number is IBMUSER3 (IP SELECT ALL) ___16____

3. Issue IP SYSTRACE ASID(X'nn'). Is there a pattern? Yes/No

4. Are there any entries at all in SYSTRACE for ASID(x'nn')? Yes/No

5. Issue IP ANALYZE RESOURCE go to the BOTTOM and look for contention. Is
IBMUSER3 waiting on an ENQUEUE? If so, what ASID is holding it? ____x'20'____

6. Calling the ASID of the holder yy, is there a pattern for IP SYSTRACE ASID(X'yy')?
Yes/No

7. Are there any entries at all for ASID(yy) Yes/No

Note: We cannot see what ASID(x'20') is doing because local storage for ASID X'20' was
not dumped in this case.
278 ABCs of z/OS System Programming Volume 8

8. Is there any indication in IP ANALYZE RESOURCE that ASID yy is waiting for another
resource? Yes/No

9. Note the TCB address holding the enqueue ___008FF2A0__

10.Issue IP SUMM FORMAT ASID(x'yy'). Look for the status of the top RB of TCB found
above. Issue F 'TCB: 00zzzzzz' where zzzzzz is the TCB address found above. Then
issue F ‘ACTIVE’.

11.What is the value of the first byte of the link field? _01_

12.Does this indicate that the task is in a wait? See Figure A-24 on page 267. __Yes/No___

13.In this case the next course of action would be to find out why the program issued a wait
while holding the enqueue. However, once again the program was not dumped (RGN not
requested). So try looking in IP VERBX MTRACE to see if you can find the answer to this
problem. In the output go to the BOTTOM and find STARTJQ (ASID x'20' corresponds to
STARTJQ as shown in IP SELECT ALL), to see what the job did after it started).

Is there anything that could be done on the console to relieve this problem? __

$HASP100 PK100LP ON STCINRDR
 IEF695I START STARTJQ WITH JOBNAME PK100LP IS ASSIGNED
 $HASP373 PK100LP STARTED
*13 COMPLETED ENQ REPLY TO CONTINUE
 $HASP100 IBMUSER3 ON INTRDR SUB VIA TSO
IRR010I USERID IBMUSER IS ASSIGNED TO THIS JOB.
ICH70001I IBMUSER LAST ACCESS AT 17:25:19 ON WEDNESDAY
$HASP373 IBMUSER3 STARTED - INIT 1 - CLASS A - SYS

________STARTJQ issued a WTOR indicating it is stuck waiting for a reply. It is
reasonable to assume that a reply would eliminate the hang and release the enqueue that
IBMUSER3 is waiting on.___

D GRS,C
 ISG343I 17.31.36 GRS STATUS 239
 S=SYSTEMS SYSZTEST CLSSHR04
 SYSNAME JOBNAME ASID TCBADDR EXC/SHR
SY1 PK100LP 0023 008FF2A0 EXCLUSIVE
SY1 IBMUSER3 0016 008D1E88 EXCLUSIVE

A.26 A standalone dump example - Answers
1. First issue IP ST WORKSHEET. Note the title: ____WAIT 084 SYSTEM CRASH

STANDALONE DUMP________

2. Page down and look at the PSW address. For a wait state the last three digits of the PSW
address will contain the wait state code and the two digits proceeding that will be the
reason code. What was the WAITSTATE and reason code? ___WAIT 084-04___

3. If you look up the meaning of this wait state you will note that it means the FRR stack is
corrupted. The FRR stacks are located at PSA+380. Since the PSA starts at virtual
address 0 for each processor we can simply browse address 380 to see what is there.
Note that if there were more than one CP, we would need to browse each PSA separately
as they are processor dependent. So on the L (locate) command we would use the
keyword CP(1). Browse the storage address 00000380 using the IPCS browse function
and write down the eyecatcher that appears there: __Y OF IS A BIG BAD OVERLAY OF
THIS PSA STACK__

Try issuing command L 380. cpu(0) while still looking at storage. What does this indicate:
Appendix A. IPCS tools and lab exercises 279

__ ____BLS19003I PCCAVT indicates CPU(0) is not online
_______BLS18104I Symbol PCCA0 not found
_______BLS18104I Symbol PSA0 not found ________

The next step is to find out what caused the overlay you found above. To do that we can
look in logdata, MTRACE or SYSTRACE in the hope that whatever overlaid the storage
left some “footprints.” In this case let us start with IP VERBX MTRACE. Whatever did this
overlay would have been one of the last things running before the wait state (the system
would not survive long from an overlay of this magnitude).

4. What was the last entry in VERBX MTRACE? _____$HASP373 KILLER
STARTED_____

5. Use IP SELECT ALL to find the ASID of the item found above ____x'19'______

6. Use IP SYSTRACE ALL what was the last SVC issued? ______SVC 6B________

SVC 6B is a modeset SVC that will allow a program to become supervisor state, allowing
it to write to locations such as PSA+380.

7. Browse the PSW shown in the SYSTRACE entry found above. The PSW address is
25400E46. Page back (and sometime you may have to page forward and then page back
to get the correct address, which is 25400DDA) and record the eyecatcher found there:
__THIS PROGRAM DESIGNED TO CAUSE WAIT084 _
280 ABCs of z/OS System Programming Volume 8

A.27 Diagnosing loops and hangs

Figure A-28 Flowchart for loops and hangs

Loops and hangs
The flowchart shown in Figure A-28 can be used to diagnose possible loops and system
hangs that may occur during processing.

Step a

To get to this point a pattern of entries has been found in SYSTRACE. Use the PSW address
in the SYSTRACE entries to determine what modules may be involved in the potential loop
that has been found. If EXT 1005 entries have been found, this indicates that the code
running is not executing traceable events. Even a couple of these entries can be significant if
the PSW is in the same area of code on each entry.

Step b

At this point a dispatching priority problem should be suspected. While this is not the only
possible reason for the ASIDs being hung, it should be checked. Pick a couple of the ASIDs
that occur frequently in the SYSTRACE ALL and look at the DPH values. Compare this to the
DPH value of the job that should be running. If the DPH values in SYSTRACE ALL are higher,
then suspect that perhaps the job or ASID simply cannot get the processor. If this does not
work out, analyze resource for contention and look to see if the job that should be running is
in a detected wait. (See steps c and e.)

IP SYSTRACE
 ALL shows WAIT

entries

Yes No

IP
SYSTRACE
 ASID(x'nn')

 shows pattern?

This is a potential loop. Use
PSW addresses in
SYSTRACE to determine
code involved

Any
contention

shown in ANALYZE
RESOURCE?

Use SYSTRACE and
PSWs to determine what is
running. Look at Summary
format to determine what
should be running.
Determine if that work is in
a wait.
(see (c) to the right

 Were
 there any entries
 in the SYSTRACE
 for this ASID?

No

Yes

Yes

Start

Pattern shown
in IP

SYSTRACEALL
output

Yes

ASID(s) that
appear to be

hung or looping
are shown in
SYSTRACE?

No

No

Compare DPH value of
the ASID(S) not running
with those that are
shown in SYSTRACE
ALL. Adjust Priorities if
needed.

For the holder of the
resource shown
in contention look for
loop in that ASID

Check the
ASID/TCB/RB for
detected or disabled
wait. (RBLINK field
check)

No

Yes

No

IP
 SYSTRACE
ASID(X'nn')

shows pattern

Yes

Yes

No

a

e

d

c

b

Appendix A. IPCS tools and lab exercises 281

Step c

In A.9, “IP SUMMARY FORMAT subcommand” on page 266, some of the key fields in the
SUMMARY FORMAT were described. To check to see if the address space is in a detected
wait, the RBLINK field of the TCB that should be running (assume this is the last TCB unless
there is a specific reason to believe that another TCB may be involved). Also, the ASCBENST
field can be used to check the last time this ASID went into a wait (compare with time stamps
in system trace).

Step d

If the ASID in question is running in SYSTRACE then the goal is to determine what is
supposed to be running in the address space that is not. To accomplish this requires some
knowledge of the address space, looking at SUMMARY FORMAT with all individual TCBs to
be examined, to determine what ones should be running. If these TCBs are not in detected
waits then SYSTRACE ASID(x'nn') can be checked to see if those tasks are looping.

Step e

If contention is noted in the ANALYZE RESOURCE command (more than a couple tasks
waiting for a resource), then the goal becomes finding out why the task holding the resource
is not releasing it. This can be treated as though the resource holder is a hung address
space, which means going back to look for patterns in IP SYSTRACE ASID(x'nn') where nn is
the ASID number holding the resource.
282 ABCs of z/OS System Programming Volume 8

Appendix B. Using IPCS to diagnose abends

This appendix describes certain abend types and how to analyze them. Following are the
procedures to analyze the dumps:

� First symptoms

Messages indicate a system or user abend. For example, message IEA995I has been
issued to the operator console. A dump was produced. An error was recorded in the
logrec data set.

� Information and tools needed for analysis

– IPCS installed

– SVC dump, SYSUDUMP, SYSMDUMP, or SYSABEND dump

– Logrec error record

– Master trace

– Job log

� Types of dumps to be analyzed:

– Abend0C1: PSW, REGS and some basics

– Abend0c4: Exploring standard save areas

– ABEND138: Diagnosing abends via RBs and the parmlist to SVCs.

– An ABEND878-8: Entering the world of VSM figuring out storage related ABENDs.

– An ABEND878-10 Local Storage shortages

– WAIT 0A2 - General system problems

– Language Environment - System dump diagnosis

B

© Copyright IBM Corp. 2007. All rights reserved. 283

B.1 Lab exercises
There are eight dumps that you can work on. You do not need to go through each
sequentially. An index to the dumps follows:

� An “Introduction to IPCS tools” dump.

� An abend0C1: PSW, REGS and some basics

� An Abend0c4: Exploring Standard save areas

� An ABEND138: Diagnosing ABENDs via RBs and the parmlist to SVCs.

� An ABEND878-8: Entering the world of VSM figuring out storage related ABENDs.

� An ABEND878-10: Local Storage shortages

� WAIT 0A2 - General system problems

� Language Environment - System dump diagnosis

Lab setup instructions
At the IPCS primary options panel, shown in Figure B-1, choose Option 0 for defaults.

Figure B-1 IPCS PRIMARY OPTION MENU

When selecting Option 0, Figure B-2 on page 285 is displayed. Add the dump data set name
to the Source field to initialize the dump, as follows:

Source ==> DSNAME('ITSO.S2895.DUMP1')

 ------------------- z/OS 01.08.00 IPCS PRIMARY OPTION MENU -------------------
 OPTION ===>

 0 DEFAULTS - Specify default dump and options * USERID - ROGERS
 1 BROWSE - Browse dump data set * DATE - 07/02/05
 2 ANALYSIS - Analyze dump contents * JULIAN - 07.036
 3 UTILITY - Perform utility functions * TIME - 11:52
 4 INVENTORY - Inventory of problem data * PREFIX - ROGERS
 5 SUBMIT - Submit problem analysis job to batch * TERMINAL- 3278T
 6 COMMAND - Enter subcommand, CLIST or REXX exec * PF KEYS - 24
 T TUTORIAL - Learn how to use the IPCS dialog ********************
 X EXIT - Terminate using log and list defaults

 Enter END command to terminate IPCS dialog

Lab exercise #1:

� Switch dumps by typing =0 (zero) on the IPCS command line.

� Change the DSNAME to ITSOE.S2895.DUMP1.

� Press Enter and proceed back to IPCS Option 6 (commands) by typing =6 on the
command line. Proceed with the exercise.

� The Problem: Diagnose a SLIP dump.
284 ABCs of z/OS System Programming Volume 8

Figure B-2 Default panel after selecting Option 0

Use IPCS commands
The IP ST REGS command tells you what the registers were at the time of the dump, as
follows:

� For SLIP dump REGS at time slip matched.

� For console dump - typically all zeros.

� For abend dump - they are theoretically the REGS at time of abend.

� For standalone dump use IP CPU REGs to get REGS from each CPU.

� The IP ST FAILDATA command formats the SDWA if it is present. Generally it will give
you a better overall picture but may not always be there and may not be the same as ST
REGS due to recovery actions.

Information from the IP ST REGS command
If the calling program is in AR mode, all addresses that it passes, whether they are in a GPR
or in a parameter list, must be ALET-qualified. A parameter list can be in an address space
other than the calling program's primary address space or in a data space, but it cannot be in
the calling program's secondary address space.

What does an AR contain? An AR contains a token, an access list entry token (ALET). An
ALET is an index to an entry on the access list. An access list is a table of entries, each of
which points to an address space, data space, or hiperspace to which a program has access.

The following questions can all be answered by using the IP ST REGS command.

------------------------- IPCS Default Values -------------------------------
Command ===>

 You may change any of the defaults listed below. The defaults shown before
 any changes are LOCAL. Change scope to GLOBAL to display global defaults.

 Scope ==> LOCAL (LOCAL, GLOBAL, or BOTH)

 If you change the Source default, IPCS will display the current default
 Address Space for the new source and will ignore any data entered in
 the Address Space field.

Source ==> DSNAME('ITSO.S2895.DUMP1')
 Address Space ==>
 Message Routing ==> NOPRINT TERMINAL
 Message Control ==> CONFIRM VERIFY FLAG(WARNING)
 Display Content ==> NOMACHINE REMARK REQUEST NOSTORAGE SYMBOL

Press ENTER to update defaults.

Use the END command to exit without an update.
Appendix B. Using IPCS to diagnose abends 285

IP SYSTRACE
Use to determine what else was happening on the system at the time of the dump.

� Options to use:

– IP SYSTRACE ALL - formats all ASIDs.

– IP SYSTRACE TIME(LOCAL) - converts the time to local time (readable).

– IP SYSTRACE ASID(X'nn') - formats only trace records associated with the requested
ASID.

Things to look for in the SYSTRACE:

� If a WAIT entry is found in SYSTRACE the system is not running 100% CPU.

� EXT 1005 entries for the same ASID may be indicative of a loop.

� Only traces traceable events such as SVCs, PCs.

Questions:

1. Was this dump in AR mode at the time of the failure? _____

2. What was the failing PSW address? _________

3. What ASID is this failing code executing in? _________

4. What was the failing TCB address? ________

5. What is the value in R14? ________

Answers to questions: See “Lab exercise #1 - Answers IP ST REGS” on page 302.

Note: See Chapter 8 in z/OS MVS Diagnosis: Tools and Service Aids, SY28-1085 for
examples and details of SYSTRACE. See “SYSTRACE definitions” on page 261 for
sample output.
286 ABCs of z/OS System Programming Volume 8

Some Key Fields in IP SUMM FORMAT
The IP SUMM FORMAT ASID(X'nn') command will format lots of data about the specified
address space. In this lab we will be interested in the following fields:

� RBOPSW - (contained in the RB under the TCB: of interest) - Can be found by going to
the bottom and issuing F 'TCB: 00nnnnnn' PREV, then F ACTIVE to find the most recently
active RB. This field shows the last running PSW address at the time the dump was taken
or the address that the TCB entered a wait at.

� WLIC - (found in the same manner as RBOPSW above) shows the last interrupt that
occurred on a given RB.

� GPR values - Show the register values at the time of the interrupt in the *previous* RB.
That means that the RB with the WLIC value stores its registers in the next RB, or in the
TCB if there is not a following RB.

� TCB summary at the very bottom of the output - Contains a CMP field that shows the last
completion code issued for a TCB.

Figure B-3 on page 288 shows an example of a TCB summary where the last TCB shows a
completion code of ABEND 0C9.

Questions:

1. By using IP SYSTRACE ALL and looking in the output for the word WAIT you can find
out if all CPUs were busy at the time of the dump. In this dump were all CPUs busy?
YES/NO (circle one)

2. EXT 1005 entries and CLKC entries are indicative of possible loops. Use the FIND
command in the output to see if there are any EXT or CLKC entries.

– What address spaces had EXT 1005 entries (Use: F 'EXT')?

– A loop would most likely be indicated by EXT entries with the same PSW addresses
over and over. Do the address spaces you found above appear to be in a loop?

3. Use IP SYSTRACE TIME(LOCAL) ASID(x'20') and determine what the last time stamp
in the trace is. Use the BOTTOM command, then you may need to scroll right with
PF11. ________________

4. You saw previously from the IP CBF RTCT command that ASID X'20' was dumped.
What is the last TCB that was active in the trace table for this ASID? You can use the IP
SYSTRACE ASID(X'20') TIME(LOCAL) command and then BOTTOM to find this out.

5. Sometimes it is useful to look for abends that show up in SYSTRACE in the output from
above. Use the F '*R' PREV command to find the last *RCVY entry that shows entry to
recovery. Press PF7 to find the *PGM 001 entry that appears above that shows the
0C1. What was the PSW address that the 0C1 occurred at from looking at the *PGM
001 entry? _______________________

6. Issue the F ' B ' PREV command to find the SVC B entry (repeat find once to get past
the SVCR), use the mapping below to answer the following questions:

– What address will the time be returned to __________________________

– What format will it be returned in _________________________________

Answers to questions: See “Lab exercise #1 - Answers IP SYSTRACE” on page 302.
Appendix B. Using IPCS to diagnose abends 287

Figure B-3 TCB summary

Figure B-4 shows the result of issuing the BOTTOM command followed by the F 'ACTIVE'
previous command to locate the TOP RB of the Last Task in the address space. Note this task
is in a WAIT that was issued at: 87E44BD8.

Figure B-4 PRB layout

SUMMARY FORMAT exercises

JOB IBMUSER3 ASID 0023 ASCB 00F9B400 FWDP 00FA3300 BWDP 00FA3480 PAGE 00000005
 TCB AT CMP NTC OTC LTC TCB BACK PAGE
 005FE0A8 00000000 00000000 00000000 005FFBF8 005FFE88 00000000 00000020
 005FFE88 00000000 00000000 005FE0A8 00000000 005FFBF8 005FE0A8 00000024
 005FFBF8 00000000 005FFE88 005FE0A8 005EC8B0 005EC8B0 005FFE88 00000026
 005EC8B0 00000000 00000000 005FFBF8 005EC120 005EC120 005FFBF8 00000029
 005EC120 940C9000 00000000 005EC8B0 00000000 00000000 005EC8B0 00000032

Note: The WLIC field shows 00020001, which means the last SVC this task issued was
SVC 1 (Wait).

ACTIVE RBS
PRB: 005F51D8
 -0020 XSB...... 7FFFEE10 FLAGS2... 80 RTPSW1... 00000000 00000000
RTPSW2... 00000000 2436D000
 -0008 FLAGS1... 42800008 WLIC..... 00020001
 +0000 RSV...... 00000000 00000000 SZSTAB... 00110083 CDE......
005F5638 OPSW..... 070C1000 87E44BD8
 +0018 SQE...... 00000000 LINK..... 015CCE88
 +0020 GPR0-3... 00000002 005FF710 005DE244 00000000
 +0030 GPR4-7... 00000048 00000000 00FC3CC0 005DE000
 +0040 GPR8-11.. 005F9640 07E1E7B5 07E1D7B6 07E1C7B7
 +0050 GPR12-15. 07E1B7B8 00016C28 00000001 005F9640

+0060 RSV...... C9E2C7E6 C4D9E5D9

Questions:

1. Use IP SUMM FORMAT ASID(X'20') followed by the BOTTOM command. Looking at
the TCB summary, what is the TCB address that ended in a non-zero completion code:

2. Use F 'TCB: 00' PREV command to find the TCB that took the ABEND0C1 then issue F
'ACTIVE' to find the top RB.

– From that RB what are the values of OPSW _______________________

– And the WLIC value _______________

– What is the value in R14 at the time the SVC 1 was issued? (Hint: obtain R14 from
the following SVRB since the registers at the time the SVC was entered can be
found in the following RB) ___________________

– Browse the storage at R14 above. What is the offset into the “Module” above
assuming that the “I” at the beginning of the name represents the start of the module

Answers to questions: See “Lab exercise #1 - Answers Summary Format” on page 302.
288 ABCs of z/OS System Programming Volume 8

Diagnosing an ABEND0C1 dump
The exercises on the following pages are designed to demonstrate how to diagnose an
ABEND0C1. An ABEND0C1 is an attempt by the processor to execute an instruction that is
not valid or not coded correctly.

Typically the abend will occur when a program executes a bad branch. Thus, often the PSW
where the abend occurs is less important than where the last valid instruction was executed.
There are a couple of ways to determine that.

� Find a base register. Many programs use a base register to establish addressability. This
may be one or more registers but typically R12 is chosen. Thus looking at R12 may point
to code that was last in control.

� Find the source of the branch. By convention often the BALR 14,15 instruction is used to
get from one program to another. If this is the case, R14 will point to the source of the call.

� Look at the TCB/RBs of the abending task. In some cases the previous RB can give a clue
as to what program was to get control next. For instance, perhaps the previous RB has a
WLIC of 00010006 which would be a LINK SVC and will enable you to look at the parmlist
for the link to find the information about what program got control as a result.

� Examine SYSTRACE for the ASID/TCB that abended. Perhaps there was a traceable
event that occurred prior to the abend that will give you a clue as to what program was in
control leading up to the abend.

Use any details you get from the above to search problem databases for a known fix for a
vendor problem or to feed back to the programmer for a customer-written program.

Lab exercise #2:

� Switch dumps by typing =0 (zero) on the IPCS command line.

� Change the DSNAME to ITSO.S2822.DUMP6.

� Press Enter and proceed back to IPCS Option 6 (commands) by typing =6 on the
command line. Proceed with the exercise.

� The Problem: Diagnose an ABEND0C1 ABEND dump.
Appendix B. Using IPCS to diagnose abends 289

Questions:

1. Determine what this dump is all about: Issue the IP LIST TITLE command. From the
output is there any indication that this dump was the result of an abend? What abend?
______.

Normally we could confirm this with the IP ST WORKSHEET command. However, in
this case the dump was captured by adding a SYSMDUMP DD card in the job so no
SDWA was captured, so in this case ST WORKSHEET does not help.

2. Using the IP SYSTRACE ALL command and issuing a F '*PGM', what PSW address
was the PGM 001 (a.k.a. ABEND0C1) taken at? _______________________

3. Fill in the abend code in the *RCVY entry below based on the *RCVY entry that
immediately follows the *PGM 001:

– *RCVY PROG 94 __ __ __ 000 (file in the 3 missing characters)

4. Use the IP ST REGS command to get the relevant information about the abend 0C1.
Record the following:

– PSW _______________________________________

– R14 __

– Primary ASID (PASN) __________________________

– Abending JOBNAME _______________________

5. Use the =1 command to get into IPCS browse:

– Browse the PSW address what 'instruction' does the PSW point to?

6. Often, branches are accomplished with BALR 14,15, making R14 point to the caller.
Check R14 in this dump and see what the instruction before R14 is: Browse the
address in R14 and record the 4-byte instruction below:

7. The instruction above was written in Assembler as BAL 14,LALALAND. What program
issued this bad branch? Use PF7 to locate an eyecatcher and record what you find:

8. What is the offset from the beginning of the program (assume the 47F0 instruction to
branch around the program is the beginning of the program) of the BAL 14,LALALAND
found above ________________

Answers to questions: See “Lab exercise #2 - Answers diagnosing an ABEND0C1” on
page 303.
290 ABCs of z/OS System Programming Volume 8

Diagnosing an ABEND0C4
This exercise is designed to show how to diagnose an ABEND0C4. An ABEND0C4 is a data
exception which typically means that an attempt was made by the executing instruction to
either read or write data in an area of storage that was either not GETMAINed or that the
program is not authorized (by PSW key) to access.

To diagnose this problem it is necessary to determine what instruction caused the abend to
occur and what program was running at the time that contained that instruction. To
accomplish this:

� Find the PSW address from the registers at the time of the abend.

� Browse this PSW address in storage and back up until an eyecatcher is found.

� Determine the offset of the abend in the code by subtracting the PSW address from the
beginning of the program name.

� Additional information that may be useful includes the program that called the program
that abended.

� Additionally, it may be of value to determine what data was attempting to be written or
read at the time of the abend.

Standard save area mapping and use
Standard save areas are a convention that provides linkage between called programs. By
using standard save areas, you can find the caller of a program or subroutine as well as the
values of the registers at the time of the call.

Figure B-5 Save area layout

Diagnosing an ABEND0C4

Lab exercise #3:

� Switch dumps by typing =0 (zero) on the IPCS command line.

� Change the DSNAME to ITSO.S2822.DUMP7.

� Press Enter and proceed back to IPCS Option 6 (commands) by typing =6 on the
command line. Proceed with the exercise.

� The Problem: Diagnose an ABEND0C4 ABEND dump.

R13

RES(0) HSA LSA R14 R15 R0 R1 R2

R3 R4 R5 R6 R7 R8 R9 R10

R11 R12

RES.(0) -> Reserved area can be anything but is typically zeros
HSA --> Points to the caller's Save Area (Higher Save Area)
LSA ---> Points to the save area to be used by programs called by this one (Lower Save Area)
R14 --> Typically the address of the call to the program that called the one using this save area
Appendix B. Using IPCS to diagnose abends 291

Questions:

1. Using the IP SYSTRACE ALL command and issuing a F '*RCVY', what PSW address
was the preceding PGM 004 (ABEND0C4) taken at? _______________________

2. Use the IP ST REGS command to get the relevant information about the ABEND 0C4
(ignore and page past any error messages). Record the following:

– PSW _______________________________________

– R3__

– R4 ___

– R13__

– R14 __

– Primary ASID (PASN) __________________________

3. Abending JOBNAME _______________________

4. Use the =1 command to get into IPCS browse. Browse the PSW address and back up 4
bytes (L x-4 when looking at the PSW). What instruction does the PSW point to?
________________ (record the 4 bytes of hex data)

– The above instruction represents a ST 3,20(,4)

– What caused the ABEND0C4 __________________________

5. What value was to be stored ___________________________

6. Determine the name of the abending module by backing up with PF7 and record the
eyecatcher you find there _____________________________________

7. What is the offset of the ABEND0C4 from the above program (assume the program
beginning is the 47F0): ____________________________

8. Based on the above the ABEND 0C4 occurs because R4 is bad. Use R14 value to
determine what program called this one (browse the storage in R14 and back up to find
the eyecatcher; record it here): ___

9. See Figure B-5 on page 291 for a description of standard save areas. Based on the
failing instruction above, find what value R3 had on entry to S0C4RTN (the instruction
prior to the abend was SR 3,3, which zeroes it). Use the R13 value you recorded above
to map the standard save area.

– RESERVE HSA

– ___________ ________

10.In this case the program has set up R13 to point to a save area that will be used to call
another program. Find the higher save area pointed to by the HSA value above.
Browse that address and record the value of R3 and R4 from our caller’s save area.
These are R3 and R4 at the time of the call to S0C4RTN: __________________

Answers to questions: See “Lab exercise #3 - Answers diagnosing an ABEND0C4” on
page 303.
292 ABCs of z/OS System Programming Volume 8

Diagnosing ABEND138 errors
Some types of abends are issued because the caller of the system service provided bad
input. When you encounter such an abend, the key to diagnosing it is to find the issuer of that
abend as well as the parameters passed on. This exercise demonstrates how to do both.

Essentially the steps are to find the PSW where the SVC was issued from. You can do this
from by using the following:

� Use the SYSTRACE to find the ABEND and then backing up to the corresponding SVC
entry in the SYSTRACE and extracting the PSW address from there.

� The RBOPSW will also point to the issuing PSW. The RB of interest will likely have a
WLIC value that contains the SVC number. For instance, WLIC of 00010038 would be an
ENQUEUE.

� Once the PSW has been obtained then you can use the same methods to obtain registers
at time of issuance.

– In the SYSTRACE, the SVC entry will have R15, R0, and R1 recorded.

– In the RBs, the registers at the time of the SVC will be contained in the RB (or SVRB,
PRB, or IRB) that follows the one with the OPSW and WLIC values. If there is no
following RB then the registers can be found in the TCB.

� Once the PSW and registers have been found, browse the storage at the PSW to find the
issuer of the SVC. Also use the z/OS MVS Diagnosis: Tools and Service Aids, SY28-1085
to map the parameter list passed to the SVC.

Lab exercise #4:

� Switch dumps by typing =0 (zero) on the IPCS command line.

� Change the DSNAME to ITSO.S2822.DUMP8.

� Press Enter and proceed back to IPCS Option 6 (commands) by typing =6 on the
command line. Proceed with the exercise.

� The Problem: Diagnose an ABEND138 ABEND dump.
Appendix B. Using IPCS to diagnose abends 293

Questions:

1. Issue the IP SUMM FORMAT command to format the failing ASID. Max to the bottom
using PF8. What is the TCB address with a completion code of 138?

2. An ABEND138 indicates that a second ENQUEUE was issued for the same resource
twice without an intervening DEQUEUE. Determine the resource name that caused the
abend, as follows:

– Find the TCB above with the command F 'TCB: NNNNNNNN' PREV (address must
be 8 digits). Then find the first active RB with F ‘ACTIVE’. This should be a PRB.
Find and record the WLIC value ______________ and the OPSW

The WLIC value represents the last interrupt that occurred on that RB (in this case
an ENQUEUE), while the OPSW represents the address where it was issued from.

– To find the resource name requested on the ENQUEUE, the parameter list must be
found. To accomplish this, find R1 from the next RB (an SVRB) and record the value

The registers associated with the RB are saved in the next RB. If there is not a next
RB then those registers will be saved in the TCB.

– Go to IPCS browse and locate the R1 value you recorded above and record the first
12 bytes here _______________ _______________ __________________

3. The ABEND138 occurred because the ENQUEUE above was the second such
ENQUEUE for the resource without a DEQUEUE in between. Issue IP SYSTRACE and
max to the bottom of the output. Issue F 'SVC 3' PREV (use 4 spaces between the C
and the 3). This is the failing SVC 38 request. Note the PSW address and the R1
values __________________ __________________

Note that the format of SYSTRACE entries is SVC#, 2nd word of PSW, R15, R0, and
R1.

Notice these values are the same as those obtained from the RBs above.

4. Using the F command above, look at the preceding ENQUEUEs and DEQUEUEs (SVC
30) to find a preceding ENQUEUE or DEQUEUE for the same resource. What are the
PSW and R1 values for the preceding entry with a matching resource name?
_______________ ________________

5. You will have to look through a couple of entries. The parmlist pointed to by a
DEQUEUE has the resource names in the same places as the ENQUEUE parmlist.
Hint: The parmlist address you are interested in will be in the same general area as R1
above.

� Record the name of the module that issued the ENQUEUEs _____________

Answers to questions: See “Lab exercise #4 - Answers diagnosing an ABEND138” on
page 304.
294 ABCs of z/OS System Programming Volume 8

Diagnosing storage problems - ABEND878
To diagnose storage problems with a dump, it is best to use the VERBX VSMDATA
‘SUMMARY’ command in IPCS. There is a wealth of information about the output of this
command. Chapter 29 of z/OS MVS Diagnosis: Reference, GA22-7588 provides details.

In general the approach is to determine whether this is a common or local storage problem.
The exercise that follows details a common storage shortage problem. The steps for
diagnosing a local (ASID) storage problem are similar.

To answer the questions, question # 2, for this abend, use the following information.

SSRV trace entries
For virtual storage management, use the following information:

� For SSRV 132 (Storage Obtain)

� SSRV 133 (Storage Release)

SSRV requests for VSM
For an SSRV request to virtual storage management, the data is:

Under UNIQUE-1: Information input to the VSM storage service, the bytes are as follows:

0 Flags:
 X... RESERVED
 .1.. KEY was specified
 ..1. AR 15 is in use
 ..0. AR 15 is not in use
 ...1 LOC=(nnn,64) was specified. Storage can be backed abov
 the bar
 1... CHECKZERO=YES was specified
 0... CHECKZERO=NO was specified explicitly, or by default
 1.. TCBADDR was specified on STORAGE OBTAIN or RELEASE
 00 OWNER=HOME was specified explicitly, or by default
 01 OWNER=PRIMARY was specified
 10 OWNER=SECONDARY was specified
 11 OWNER=SYSTEM was specified
1 Storage key (bits 8 through 11)
2 Subpool number
3 Request flags:
 1... ALET operand specified
 .1.. Storage can be backed anywhere
 ..00 Storage must have callers residency
 ..01 Storage must have a 24-bit address
 ..10 The request is for an explicit address
 ..11 Storage can have a 24- or 31-bit address
 1... Maximum and minimum request
 1.. Storage must be on a page boundary
 1. Unconditional request
 0 OBTAIN request
 1 FREEMAIN request
Appendix B. Using IPCS to diagnose abends 295

SSRV storage size
Under UNIQUE-2, the following information is needed for question # 2:

In an SSRV trace entry for a VSM STORAGE OBTAIN or GETMAIN, one of the following:

– The length of the storage successfully obtained

– The minimum storage requested, if the storage was not obtained

ABEND878 - finding the request

ABEND878 - analyzing storage use
Using the same dump, issue the VERBX VSMDATA ‘SUMMARY’ command.

Lab exercise #5:

� Switch dumps by typing =0 (zero) on the IPCS command line.

� Change the DSNAME to ITSO.S2895.DUMP4.

� Press Enter and proceed back to IPCS Option 6 (commands) by typing =6 on the
command line. Proceed with the exercise.

� The Problem: Diagnose an ABEND878 ABEND dump.

Questions:

1. Since this dump was captured by the system, use the ST FAILDATA command to find
the abending request. What was the abend code _____ and Reason code

2. Issue the IP SYSTRACE command and then F '*S' to find the failing SVC. The failing
request is the SSRV 132 above it. Use the mappings provided in z/OS MVS Diagnosis:
Tools and Service Aids, SY28-1085 (SSRV trace entries) to fill in the following
information and for this exercise, check the SSRV trace entries above.

– What request does SSRV 132 represent?

– Note: had this request been an SVC entered, the mapping you need to use is found
in z/OS MVS Diagnosis: Reference, GA22-7588 under SVC 10 (0A0A) or SVC 132
(0A78).

– What was the PSW address of the request? _______________________________

– Note: if it was PC entered as this one was you will need to get the PSW address
from the PC entry, which in this case is a 30B (storage obtain) and use the
information provided above.

– What subpool was requested? ______________________

– Was storage requested above or below the line? ________________________

– What was the size requested for the storage? _________________________

3. Looking backward in the system trace, is there an apparent pattern? To do this, issue F
‘132’ prev .__________________________

Answers to questions: See “Lab exercise #5 - Answers diagnosing storage - ABEND878”
on page 305.
296 ABCs of z/OS System Programming Volume 8

ABEND878 - CSA/SQA tracker
Enter the VERBEXIT VSMDATA OWNCOMM command to display information about jobs or
address spaces that hold storage in the common service area (CSA), extended CSA, system
queue area (SQA), or extended SQA. The dump being analyzed with VERBEXIT VSMDATA
OWNCOMM must contain the SQA and ESQA subpools. If you use the SDUMP or SDUMPX
macro or the DUMP command to obtain the dump, make sure to specify the SQA option of
the SDATA parameter.

Enter the VERBEXIT VSMDATA ‘OWNCOMM DETAIL’ command to obtain a report that
displays a list of storage ranges owned by one or more jobs.

Questions:

1. Issue the F 'GLOBAL DATA' command. Using the table found, fill in the following
information from the Global Data Area:

– SIZE OF:

– CSA _______________________________

– SQA_______________________________

– ECSA______________________________

– ESQA______________________________

– Was any of CSA or ECSA converted to SQA in this dump? ______

If large amounts of CSA have been converted to SQA, suspect an SQA problem.

2. Use the F 'CSA TOTAL' command to find the total current usage of CSA/ECSA (note:
CSA is the lower number and ECSA is the upper number). Use SQA Total to get the
SQA information and fill in the information below:

– Current usage of:

– CSA _______________________________

– SQA_______________________________

3. SQA can overflow into CSA. Since this did not happen, we assume that this is a CSA
problem (only one page of CSA is left). Find the CSA total line again with the F 'CSA
TOTAL' command. Prior to this line is the information for each subpool in CSA. Use the
F '*****' PREV command and PF5 to find the CSA subpool with the largest amount of
storage below the line. Stop looking when you get to the SQA total line. Fill in the
following line:

– ***** SUBPOOL _____, KEY ___ TOTAL ALLOC: 0052C000 (___________
BELOW, 00098000 ABOVE)

4. Does the Subpool number here match that found on the previous page? __________

Answers to questions: See “Lab exercise #5 - Answers ABEND878 - Analyzing storage
use” on page 306.
Appendix B. Using IPCS to diagnose abends 297

Lab exercise #5:

� Switch dumps by typing =0 (zero) on the IPCS command line.

� Change the DSNAME to ITSO.S2895.DUMP2.

� Press Enter and proceed back to IPCS Option 6 (commands) by typing =6 on the
command line. Proceed with the exercise.

� The Problem: Diagnose an ABEND878 ABEND dump.

Questions:

Use z/OS MVS Diagnosis: Reference, GA22-7588, which describes the output of the
VERBX VSMDATA OWNCOMM command to complete this exercise.

1. . Using the same dump as on the previous page, issue the IP VERBX VSMDATA
'OWNCOMM SUMMARY' command

– What jobname consumed the most SQA? _________________

– How much SQA was allocated to that jobname? ________________

2. Issue the IPVERBX VSMDATA 'OWNCOMM DETAIL ASIDLIST(32)' command.
Answer the following questions about the storage:

– What jobname allocated this storage? _________________________________

– What was the length of the storage requested? __________________________

– What was the return_address of the storage request? ___________________

– What were the first 16 bytes of the storage area in question?

– Is there an obvious pattern here? ___________

3. Since private storage was not dumped in this dump, it will not be possible to browse
storage to look for an eyecatcher for the program represented by the return address.
However, use the IP W command (IP W return_address) to determine what the name of
the program was that issued this request: _____________________

Answers to questions: See “Lab exercise #5 - Answers ABEND878 - CSA/SQA tracker” on
page 306.
298 ABCs of z/OS System Programming Volume 8

Diagnosing local storage shortage
This exercise will abbreviate the process by:

� Understanding the failing request

� Getting a picture of current local storage usage

� Using that picture to evaluate where (high private or user region) the problem lies.

� Using VSM control blocks to specifically identify the problem pattern

� Using IPCS tools to identify the problem program

SSRV trace entries
For this exercise, in the SYSTRACE, use the following information. An example of a
SYSTRACE entry is shown in Figure A-19 on page 261 and Figure A-20 on page 261.

Under UNIQUE-1:

� Byte 2:

Contains the subpool number.

� Byte 3 Request flags:

Under UNIQUE-2:

� In an SSRV trace entry for a VSM STORAGE OBTAIN or GETMAIN, one of the following:

– The length of the storage successfully obtained

– The minimum storage requested, if the storage was not obtained

Under UNIQUE-3:

� In an SSRV trace entry for a VSM STORAGE OBTAIN or GETMAIN, one of the following:

– The address of the storage successfully obtained, if you specified address; otherwise,
zero.

Lab exercise #6:

� Switch dumps by typing =0 (zero) on the IPCS command line.

� Change the DSNAME to ITSO.S2822.DUMP9

� Press Enter and proceed back to IPCS Option 6 (commands) by typing =6 on the
command line. Proceed with the exercise.

� The Problem: Diagnose local storage shortages.

1... ALET operand specified
.1.. Storage can be backed anywhere
..00 Storage must have callers residency
..01 Storage must have a 24-bit address
..10 The request is for an explicit address
..11 Storage can have a 24- or 31-bit address
.... 1... Maximum and minimum request
.... .1.. Storage must be on a page boundary
.... ..1. Unconditional request
.... ...0 OBTAIN request
.... ...1 FREEMAIN request
Appendix B. Using IPCS to diagnose abends 299

– The maximum storage requested, if the storage was not obtained

� In an SSRV trace entry for a VSM STORAGE RELEASE or FREEMAIN:

The address of the storage to be released.

Under UNIQUE-4:

� Left 2 bytes: ASID of the target address space

� Next byte4: Reserved

� Right byte:

If the GETMAIN/FREEMAIN/STORAGE OBTAIN/STORAGE RELEASE is unconditional,
an abend will be issued and the SSRV trace entry 3rd byte of UNIQUE-4 will contain X'FF'.
If the GETMAIN/FREEMAIN/STORAGE OBTAIN/STORAGE RELEASE is conditional, no
abend will be issued and the SSRV trace entry 3rd byte of UNIQUE4 will contain the
actual return code from the storage service.

Questions:

1. Issue the IP SYSTRACE ALL followed by the F *SVC command to find the SVC D
request for this error. Back up a couple of lines with the UP 5 command. Use the
mappings provided in z/OS MVS Diagnosis: Tools and Service Aids, SY28-1085
(SSRV trace entries) to fill in the following information:

– What was the ASID where the failure occurred? ____________
– What was the size requested of the failing GETMAIN? ______________________

• Does this seem excessive? ________________

– What was the requested subpool? ___________________

– Based on the Subpool requested, is this a global or local problem? ____________

• SP 0-127 are low private (Region) subpools.

2. Issue the IP VERBX VSMDATA 'SUMMARY NOG ASID(101)' command, go to the
bottom of this output and find the local storage map. Fill in the following values from the
map:

– __________________ <- Max Ext. User Region Address
– __________________ <- Ext. User Region Top
– ___________________ <- Ext. User Region Start

3. Extended private storage grows down until it reaches the current top of region;
subsequent local storage may then fail as a result. Based on the storage map, did this
happen? _______

4. The user region grows up until the current top of the region approaches the maximum
user region. Subsequent region requests that would push the current top of the region
over the max will fail. Did this occur in this case? _________

5. At this point we can assume that the problem is with the user region. This is not always
as obvious when REGION and PRIVATE storage “collide.” To determine whether the
problem is that the user region is exhausted or whether instead it is somehow
fragmented, look for FBQEs that describe storage in the USER REGION range if there
are any.

– ____________

– Does this suggest fragmentation or storage exhaustion? ________________
300 ABCs of z/OS System Programming Volume 8

Questions (Continued):

6. Find a pattern in the user region subpools. Look at the Local Subpool Summary near
the bottom of the report. What subpool and key has the largest storage allocation: SP:
_________ Key: __________

7. Look for a pattern in the subpool found previously. Issue F ***** PREV until you find the
subpool summary line for the subpool of interest. Page back and see if there is a
pattern. Based on what you see what would be the size of the problematic GETMAIN?

8. Pick any one of the addresses you browsed in the previous question and record the
eyecatcher that you find: Hint: Use address 273F3000; did you find it?

– __

9. Go back to SYSTRACE ALL and determine the PSW address where the GETMAIN
was issued from. Browse that storage and record the eyecatcher of the offending
module:

� ___________________________________

10.Use the SUMMARY FORMAT ASID(X'1D') command to find the EP name (under the
RB that took the abend). Max to the bottom using PF8. Select the TCB address with a
completion code. Find the TCB above with the command F 'TCB: NNNNNNNN' PREV
(address must be 8 digits). Then find the first active RB with F ‘ACTIVE’. What is the
EP...... name under the RB. ___________________________________

Answers to questions: See “Lab exercise #6 - Answers diagnosing local storage
shortages” on page 307.
Appendix B. Using IPCS to diagnose abends 301

Lab exercise #1 - Answers IP ST REGS
The following questions can all be answered by using the IP ST REGS command.

1. Was this dump in AR mode at the time of the failure? __NO___

2. What was the failing PSW address? _8141359C________

3. What ASID is this failing code executing in? __20_______

4. What was the failing TCB address? _8FF2A0_____

5. What is the value in R14__A5400F74______

Lab exercise #1 - Answers IP SYSTRACE
1. By using IP SYSTRACE ALL and looking in the output for the word WAIT, you can

determine whether all CPUs were busy at the time of the dump. In this dump, were all
CPUs busy? YES/NO (highlighted)

2. EXT 1005 entries and CLCK entries are indicative of possible loops. Use the FIND
command in the output to see if there are any EXT or CLCK entries.

– What address spaces had EXT 1005 entries (hint: F 'EXT ')? _1, 9, and 20_______

– A loop would most likely be indicated by EXT entries with the same PSW addresses
over and over. Do the address spaces you found above appear to be in a loop?
__NO______

3. Use IP SYSTRACE TIME(LOCAL) ASID(x'20') and determine what the last time stamp in
the trace is. Use the BOTTOM command; you may need to scroll right with PF11.
___18:58:04.459546______

4. You saw previously from the IP CBF RTCT command that ASID X'20' was dumped. What
is the last TCB that was active in the trace table for this ASID? You can use the IP
SYSTRACE ASID(X'20') TIME(LOCAL) command and then bottom to find this out.
___008FF2A0 ___

5. Sometimes it is useful to look for abends that show up in SYSTRACE in the output from
above. Use the F '*P' PREV command to find the last *PGM 001 entry that shows the 0C1.
What was the PSW address that the 0C1 occurred at from looking at the *PGM 001 entry?
__A47BE8BA __________

6. Issue F ' B ' PREV command to find the SVC B entry and repeat find once to get past the
SVCR. Use the mapping below to answer the following questions:

– What address will the time be returned to? ___00D392C8_____

– What format will it be returned in? __Elapsed time in hundredths of a second__

Lab exercise #1 - Answers Summary Format
1. Use IP SUMM FORMAT ASID(X'20') followed by the BOTTOM command. Looking at the

TCB summary, what is the TCB address that ended in a non-zero completion code:
__008FF2A0_____

2. Use the F 'TCB: 00' PREV command to find the TCB that took the ABEND0C1, then issue
F 'ACTIVE' to find the top RB.

– From that RB what are the values of OPSW __070C1000 8141359C__

– and the WLIC value ___0002000D______
302 ABCs of z/OS System Programming Volume 8

– What is the value in R14 at the time the SVC 1 was issued? (Hint: obtain R14 from the
following SVRB since the registers at the time the SVC was entered can be found in
the following RB:) __A5400F74__

– Browse the storage at the PSW above. What is the offset into the “Module” above
assuming that the "I" at the beginning of the name represents the start of the module.
__x'95C'__ Note: The module name is IGVVSEND.

Lab exercise #2 - Answers diagnosing an ABEND0C1
1. Determine what this dump is all about: Issue the IP LIST TITLE command. From the

output is there any indication that this dump was the result of an abend? What abend?
_ABEND0C1__.

Normally we could confirm this with IP ST WORKSHEET. However in this case the dump
was captured by adding a SYSMDUMP DD card in the job, so no SDWA was captured so
in this case ST WORKSHEET doesn't help.

2. Using IP SYSTRACE ALL command and issuing a F '*PGM', what PSW address was the
PGM 001 (a.k.a. ABEND0C1) taken at? _ 078D0000 00007FD2________

3. Fill in the abend code in the *RCVY entry below based on the *RCVY entry that
immediately follows the *PGM 001:

– *RCVY PROG 94 _0_ _C_ _1_ 000 (file in the 3 missing characters)

4. Use the IP ST REGS command to get the relevant information about the abend 0C1.
Record the following:

– PSW ___078D0000 00007FD2_______

– R14 ____80007F5C________________

– Primary ASID (PASN) ____1D________

– ABENDing JOBNAME ___BADPROG1_

5. Use the =1 command to get into IPCS browse:

– Browse the PSW address what “instruction” does the PSW point to? _x'00'_____

6. Often branches are accomplished with BALR 14,15 making R14 often point to the caller.
Check R14 in this dump and see what the instruction before R14 is: Browse the address in
R14 and record the 4-byte instruction below: ______45E0F060___________

7. The instruction above was written in Assembler as BAL 14,LALALAND. What program
issued this bad branch? Use PF7 to locate an eyecatcher and record what you find:
_BAD_BRANCH 2/16/2006 BAD BRANCH PROGRAM FOR S2823_

8. What is the offset from the beginning of the program (assume the 47F0 instruction to
branch around the program is the beginning of the program) of the BAL 14,LALALAND
found above ___x'34'________

Lab exercise #3 - Answers diagnosing an ABEND0C4
1. Using IP SYSTRACE ALL command and issuing a F '*RCVY', what PSW address was the

preceding PGM 004 (a.k.a. ABEND0C4) taken at? __078D0000 00007F60__

2. Use IP ST REGS command to get the relevant information about the abend 0C4 (ignore
and page past any error messages). Record the following:

– PSW __078D0000 00007F60_______
Appendix B. Using IPCS to diagnose abends 303

– R3_____00000000________________

– R4 ____00000000_________________

– R13___00007F64__________________

– R14 ___00007F36__________________

– Primary ASID (PASN) ______x'1D'___________

3. ABENDing JOBNAME ___ABEND0C4____________________

4. Use the =1 command to get into IPCS browse: Browse the PSW address and back up 4
bytes (L x-4 when looking at the PSW); what instruction does the PSW point to?
__50304014___ (record the 4 bytes of hex data)

– The above instruction represents an ST 3,20(,4).

– What caused the ABEND0C4 __Attempt to store into address x'14' (20 off R4 =
0)_____

– What value was to be stored _______0 (Contents of R3)____

5. Determine the name of the abending module by backing up with PF7 and record the
eyecatcher you find here ___S0C4RTN 03206 UWXXXX___

6. What is the offset of the ABEND0C4 from the above program (assume the program
beginning is the 47F0): ______x'2C'______________________

7. Based on the above, the ABEND 0C4 occurs because R4 is bad. Use the R14 value to
determine what program called this one (browse the storage in R14 and back up to find
the eyecatcher; record it here): _BADPROG 2/16/2006 DEVELOPED FOR SHARE ___

8. See Figure B-5 on page 291 for a description of Standard save areas. Based on the failing
instruction above, find what value R3 had on entry to S0C4RTN (the instruction prior to the
abend was SR 3,3, which zeroes it). Use R13 to map the standard save areas. Browse the
storage at R13 and fill in the following:

– RESERVE HSA

– _____0____ __6F60__

9. In this case the program has set up R13 to point to a save area that will be used to call
another program. We need to find the higher save area pointed to by the HSA value
above. Browse that address and record the value of R3 and R4 from our caller’s save
area. These are R3 and R4 at the time of the call to S0C4RTN: _F2F8F2F2
____R3=2822______ R4=0_________________

Lab exercise #4 - Answers diagnosing an ABEND138
1. Issue the IP SUMM FORMAT command to format the failing ASID. Max to the bottom

using PF8. What is the TCB address with a completion code of 138? ___008D1888____

2. An ABEND138 indicates that a second ENQUEUE was issued for the same resource
twice without an intervening DEQUEUE. Determine the resource name that caused the
abend, as follows:

– Find the TCB above with the command F 'TCB: NNNNNNNN' PREV. Then find the first
active RB with F ‘ACTIVE’. This should be a PRB. Find and record the WLIC value
__00020038__ and the OPSW _078D0000 00007F7E__

– The WLIC value represents the last interrupt that occurred on that RB (in this case an
ENQUEUE), while the OPSW represents the address where it was issued from.
304 ABCs of z/OS System Programming Volume 8

– To find the resource name requested on the ENQUEUE, the parameter list must be
found. To accomplish this, find R1 from the next RB (an SVRB) and record the value
80007F70

The registers associated with the RB are saved in the next RB. If there is not a next
RB, then those registers will be saved in the TCB.

– Go to IPCS browse and locate the R1 value you recorded above. Record the first 12
bytes here ____C0084800___ ___00007FEC__ __00007FF4___

3. The ABEND138 occurred because the ENQUEUE above was the second such
ENQUEUE for the resource without a DEQUEUE in between. Issue IP SYSTRACE ALL
and max to the bottom of the output. Issue F 'SVC 3' PREV (note: use 5 spaces
between the C and the 3). This is the failing SVC 38 request. Note the PSW address and
the R1 values ___078D0000 00007E46 _ __80007E38______

The format of SYSTRACE entries is SVC#, 2nd word of PSW, R15, R0,and R1.

Notice that these values are the same as those obtained from the RBs above.

4. Using the FIND command above look at the preceding ENQUEUEs and DEQUEUEs
(SVC 30) to find a preceding ENQUEUE or DEQUEUE for the same resource. What are
the PSW and R1 values for the preceding entry with a matching resource name?

For an SVC entry, the UNIQUE entries are as follows:

UNIQUE-1/UNIQUE-2/UNIQUE-3

gpr15--- gpr0---- gpr1----: General registers 15, 0, and 1

? __078D0000 00007F7E __80007F70__

5. You will have to look through a couple of entries. The parmlist pointed to by a DEQUEUE
has the resource names in the same places as the ENQUEUE parmlist. Hint: The parmlist
address you are interested in will be in the same general area as R1 above.

� Record the name of the module that issued the ENQUEUEs ___________________
GENS013802/17/06 ________

Lab exercise #5 - Answers diagnosing storage - ABEND878
1. Since this dump was captured by the system, use the ST FAILDATA command to find the

abending request. What was the abend code _878_ and Reason code __08___

2. Issue the IP SYSTRACE ALL command and then F '*S' to find the failing SVC. The failing
request is the SSRV 132 above it.

– What request does SSRV 132 represent? _______STORAGE OBTAIN____________

– Note: had this request been SVC entered, the mapping we would have used would be
found in z/OS Diagnosis: Reference, GA22-7588 under SVC 10 (0A0A) or SVC 132
(0A78)

– What was the PSW address of the request? __070C0000 A5400F42 ____________

– Note that if it was PC-entered as this one was, you will need to get the PSW address
from the PC entry, which in this case is a 30B (storage obtain)

– What subpool was requested? ___x'F1'___Decimal 241______

– Was storage requested above or below the line? _____Below______________

– What was the size requested for the storage? _____00001000 ____________

3. Looking backward in the system trace is there an apparent pattern? __Yes repeated
GETMAINs for same length_____________
Appendix B. Using IPCS to diagnose abends 305

Lab exercise #5 - Answers ABEND878 - Analyzing storage use
Using the same dump as on the previous page. issue the VERBX VSMDATA 'SUMMARY'
command.

1. Issue the F 'GLOBAL DATA' command. Using the table found, fill in the following
information from the Global Data Area:

– SIZE OF:

• CSA ______2AF000___________________

• SQA______263000___________________

• ECSA______1F4A1000 ___________________

• ESQA______D88000____________________

– Was any of CSA or ECSA converted to SQA in this dump? __YES___

If large amounts of CSA have been converted to SQA, suspect an SQA problem.

2. Use the F 'CSA TOTAL' command to find the total current usage of CSA/ECSA (note CSA
is the below number and ECSA is the above number). Use SQA Total to get the SQA
information and fill in the information below:

Current usage of:

– CSA ____D9B000____________________

– SQA_____1001000__________________________

3. SQA can overflow into CSA. Since this did happen, we assume that this is a CSA problem
(only one 4k page of CSA is left). Find the CSA total line again with F 'CSA TOTAL'. Prior
to this line is the information for each subpool in CSA. Use the F '*****' PREV command
and PF5 to find the CSA subpool with the largest amount of storage below the line. Stop
looking when you get to the SQA total line. Fill in the following line:

– ***** SUBPOOL _241_, KEY _0_ TOTAL ALLOC: 0056F000 (_14000_ BELOW,
3B3000 ABOVE)

4. Does the Subpool number here match that found on the previous questions?
___Yes_______

Lab exercise #5 - Answers ABEND878 - CSA/SQA tracker
Use the output of the VERBX VSMDATA ‘OWNCOMM’ command to complete this exercise.

1. Using the same dump as on the previous page, issue the IP VERBX VSMDATA
'OWNCOMM SUMMARY' command.

– What jobname consumed the most CSA? __S2895B____

– How much CSA was allocated to that jobname? ___270000_____________

2. Issue the IPVERBX VSMDATA 'OWNCOMM DETAIL ASIDLIST(32)' command. Answer
the following questions about the storage:

– What jobname allocated this storage? ___S2895B________________

– What was the length of the storage requested? _____1000_____________

– What was the return address of the storage request? _____25400F6C ___________

– What were the first 16 bytes of the storage area in question? _______DUMBPRG2 -
EATS COMMON STORAGE______________

– Is there an obvious pattern here? __YES____
306 ABCs of z/OS System Programming Volume 8

3. Since private storage was not dumped in this dump, it will not be possible to browse
storage to look for an eyecatcher for the program represented by the return address.
However, use the IP W command (IP W return address) to determine what the name of
the program was that issued this request__ASID(X'0020') 25400F6C. STRGHOG2+1C IN
EXTENDED PRIVATE______ and ______ASID(X'0020') 25400F6C.
AREA(Subpool251Key08)+0F3C IN EXTENDED PRIVATE __

Lab exercise #6 - Answers diagnosing local storage shortages
1. Issue IP SYSTRACE ALL followed by the F *SVC command to find the SVC D request for

this error. Back up a couple of lines with the UP 5 command. Use the mappings provided
in z/OS MVS Diagnosis: Tools and Service Aids, SY28-1085 (SSRV trace entries) to fill in
the following information.

– What was the ASID where the failure occurred? ____1D______

– What was the size requested of the failing GETMAIN? ______C8_______

– Does this seem excessive? _____NO_________

– What was the requested subpool? _____6__________

– Based on the Subpool requested, is this a global or local problem? __Local_____

SP 0-127 are low private (Region) subpools.

2. Issue IP VERBX VSMDATA 'SUMMARY NOG ASID(29)' go to the bottom of this output
and find the local storage map. Fill in the following values from the map:

– __27400000_________ <- Max Ext. User Region Address

– __273FF000_________ <- Ext. User Region Top

– __25400000__________ <- Ext. User Region Start

3. Extended private storage grows down until it reaches the current top of the region and
subsequent local storage may then fail as a result. Based on the storage map, did this
happen? __NO___

4. The user region grows up until the current top of the region approaches the Max user
region. Subsequent region requests that would push the current top of the region over the
Max will fail. Did this occur in this case? ___YES____

5. At this point we can assume that the problem is with the user region. This isn't always as
obvious when REGION and PRIVATE Storage “collide”. To determine if the problem is
that the user region is exhausted, or if instead it is somehow fragmented, look for FBQEs
that describe storage in the USER REGION range; are there any?

– ____NO_____

– Does this suggest fragmentation or storage exhaustion? ___Exhaustion__________

6. Find a pattern in the user region subpools. Look at the Local Subpool Summary near the
bottom of the report. What subpool and key has the largest storage allocation:
SP: ____6____ Key: _____8_____

7. Now we look for a pattern in the subpool found previously. Issue F ***** PREV until you
find the subpool summary line for the subpool of interest. Page back and see whether
there is a pattern. Based on what you see, what would be the size of the problematic
GETMAIN? ___5FB8_________

8. Pick any one of the addresses to browse and record the eyecatcher that you find:

– __DUMBPRG2 - EATS LOCAL STORAGE______
Appendix B. Using IPCS to diagnose abends 307

9. Go back to SYSTRACE ALL and determine the PSW address where the GETMAIN was
issued from. Browse that storage and record the eyecatcher of the offending module:

– __This module actually doesn't have an eyecatcher___

10.Use the SUMMARY FORMAT ASID(X'1D') command to find the EP name (under the RB:
that took the abend). Max to the bottom using PF8. Select the TCB address with a
completion code. Find the TCB above with the command F 'TCB: NNNNNNNN' PREV
(address must be 8 digits). Then find the first active RB with F ‘ACTIVE’. What is the
EP...... name under the RB? ________STRGHOG1___________________________
308 ABCs of z/OS System Programming Volume 8

Appendix C. z/OS trace processing data

This appendix contains trace processing data information and information related to z/OS
trace capabilities.

The trace output data sets must be specific to each instance of GTF and can be defined in the
cataloged procedure. Each instance of GTF to be started must have a separate cataloged
procedure, or if the same cataloged procedure is used, then a different trace data set must be
supplied with the GTF START command.

C

© Copyright IBM Corp. 2007. All rights reserved. 309

C.1 GFS trace information
GFS trace is a diagnostic tool that collects information about the use of the GETMAIN,
FREEMAIN, or STORAGE macro. You can use GFS trace to analyze the allocation of virtual
storage and identify users of large amounts of virtual storage.

You must use the generalized trace facility (GTF) to get the GFS trace data output.

C.1.1 DIAGxx parmlib member syntax
When creating a DIAGxx parmlib member, enter data only in columns 1 through 71. Do not
enter data in columns 72 through 80; the system ignores these columns.

If the system finds a syntax error in DIAGxx, it issues an error message, and then attempts to
continue processing the next keyword.

The syntax for the DIAGxx parmlib member is as follows:

C.1.2 GFS trace data
When GTF writes trace data in a data set, format and print the trace data with the IPCS
GTFTRACE subcommand.

When GTF writes trace data only in the GTF address space, use a dump to see the data.
Request the GTF trace data in the dump through the SDATA=TRT dump option.

Issue the IPCS GTFTRACE subcommand to format and see the trace in an unformatted
dump. An example of formatted GETMAIN/FREEMAIN (GFS) trace data, which is output
from IPCS in GTFTRACE format is shown in Figure C-1, “Output from IPCS GTFTRACE” on
page 311.

[VSM TRACE]
[{GETFREE(ON)|GET(ON|OFF) FREE(ON|OFF) }]
[[ASID({asid1|asid1-asidx}[,{asid2|asid2-asidx}]...)]]
[[DATA(data1[,data2]...)]
[[KEY({key1|key1-keyx}[,{key2|key2-keyx}]...)]]
[[LENGTH({len1|len1-lenx}[,{len2|len2-lenx}]...)]]
[[SUBPOOL({sub1|sub1-subx}[,{sub2|sub2-subx}]...)]]
[[JOBNAME([job1,job2...])]
[[ADDRESS([addr1|addr1-addrx][,addr2-|addr2-addrx..)]]
[[LOCREAL(loc1[,loc2]...)]
[{GETFREE (OFF) }]
[VSM TRACK]
[{CSA (ON|OFF) }]
[{SQA (ON|OFF) }]
[{CSA (ON|OFF) SQA (ON|OFF) }]
[VSM CHECKREGIONLOSS(bbb{K|M},aaa{K|M})]
310 ABCs of z/OS System Programming Volume 8

Figure C-1 Output from IPCS GTFTRACE

C.1.3 IPCS MVS dump component data analysis panel
This panel is displayed by entering Option 2.6 on the IPCS primary option menu panel. You
then see displayed the Dump Component Data Analysis panel, bypassing the Analysis of
Dump Contents Menu panel. The panel is shown in Figure C-2 on page 312.

To display information, specify “S option name” or enter S to the left of the option desired.
Enter ? to the left of an option to display help regarding the component support.

IPCS
GTFTRACE DA(‘MY.GTF.TRACE’) USR(F65)
IKJ56650I TIME-03:42:20 PM. CPU-00:00:01 SERVICE-52291 SESSION-00:00:20
BLS18122I Initialization in progress for DSNAME(¢ MY.GTF.TRACE¢)
IKJ56650I TIME-03:42:21 PM. CPU-00:00:01 SERVICE-54062 SESSION-00:00:20
**** GTFTRACE DISPLAY OPTIONS IN EFFECT ****
USR=SEL

**** GTF DATA COLLECTION OPTIONS IN EFFECT: ****
USRP option

**** GTF TRACING ENVIRONMENT ****
Release: SP6.0.6 FMID: HBB6606 System name: CMN
CPU Model: 9672 Version: FF Serial no. 270067

USRDA F65 ASCB 00FA0800 JOBN MYGTF2
Getmain SVC(120) Cond=Yes
Loc=(Below,Below) Bndry=Dblwd
Return address=849CA064 Asid=001A Jobname=MYGTF2
Subpool=229 Key=0 Asid=001A Jobname=MYGTF2 TCB=008DCA70 Retcode=0
Storage address=008D6768 Length=10392 X¢2898¢
GPR Values
0-3 00002898 00000000 7FFFC918 0B601E88
4-7 01FE3240 008FF830 849CA000 00FA0800
8-11 00000000 00000DE8 049CBFFE 849CA000
12-15 049CAFFF 0B601A9C 00FE9500 0000E510
GMT-01/06/1998 21:15:43.111628 LOC-01/06/1998 21:15:43.1

USRDA F65 ASCB 00FA0800 JOBN MYGTF2
Freemain SVC(120) Cond=No
Return address=8B2D608A Asid=001A Jobname=MYGTF2
Subpool=230 Key=0 Asid=001A Jobname=MYGTF2 TCB=008DCA70 Retcode=0
Storage address=7F73DFF8 Length=8 X¢ 8 ¢
GPR Values
0-3 00000000 7F73DFF8 008D82D8 008D7BC0
4-7 008D8958 008D6B08 008D85C8 0B335000
8-11 00000002 00000000 7F73DFF8 008D862C
12-15 8B2D6044 008D8C98 849D242A 0000E603
GMT-01/06/1998 21:15:43.111984 LOC-01/06/1998 21:15:43.1
Appendix C. z/OS trace processing data 311

Figure C-2 Dump Component Data Analysis panel

C.1.4 SUMMARY subcommand parameters
Use the SUMMARY subcommand, shown in Figure C-3 on page 313, to display or print dump
data associated with one or more specified address spaces.

 S Name Abstract
--
_ IMSDUMP IMS analysis
_ IOSCHECK Active input/output requests
_ IPCSDATA IPCS control data
_ IPHDR TCP/IP IP Header Formatter
_ IRLM IMS Resource Lock Manager analysis
_ JESXCF JESXCF Address Space Analysis
_ JES2 JES2 analysis
_ JES3 JES3 analysis
_ LEDATA Language Environment formatter
_ LISTEDT Format eligible device table
_ LLATRACE Library Lookaside trace
_ LOGDATA LOGREC formatter
_ LOGGER System logger formatter
_ LPAMAP Map link pack area
_ MERGE Merge GTF/CTRACE output
_ MMSDATA MMS control block analysis
_ MTRACE Master TRACE formatter
_ NUCMAP Nucleus CSECT Map
_ OAMDATA OAM Control Block Analysis
_ OMVSDATA OpenMVS analysis
_ RESOLVER TCP/IP Resolver Analysis
_ RMMDATA RMM Control Block Analysis
_ RMMPDA RMM PDA Trace Analysis
_ RSMDATA Real storage manager summary
_ SADMPMSG Format SADMP console messages
_ SKMSG TCP/IP Streams Message Formatter
_ SMSDATA SMS control block analysis
_ SMSXDATA SMSX Control Block Formatter
_ SRMDATA SRM control block analysis
_ SSIDATA Subsystem Interface analysis
_ STRDATA Coupling Facility Structure Data
_ SUMDUMP Format summary dump data
_ SYMDEF Static Symbol Table Formatter
_ SYMPTOMS Format symptoms
_ SYSTRACE Format system trace
_ TCAMMAP TCAM control block analysis
_ TCPHDR TCP/IP TCP Header Formatter
_ TCPIPCS TCP/IP Analysis
_ TSODATA TSO analysis
_ UDPHDR TCP/IP UDP Header Formatter
_ VLFDATA Virtual Lookaside Facility data
_ VLFTRACE Virtual Lookaside Facility trace
_ VSMDATA VSM control block analysis
_ VTAMMAP VTAM control block analysis
_ XESDATA XES analysis
312 ABCs of z/OS System Programming Volume 8

SUMMARY produces different diagnostic reports depending on the report type parameter,
FORMAT, KEYFIELD, JOBSUMMARY, and TCBSUMMARY, and the address space
selection parameters, ALL, CURRENT, ERROR, TCBERROR, ASIDLIST, and JOBLIST.
Specify different parameters to selectively display the information you want to see.

Figure C-3 SUMMARY command parameters

C.1.5 VERBEXIT subcommand
Use the VERBEXIT subcommand, shown in Figure C-4 on page 314, to run an
installation-supplied or IBM-supplied verb exit routine.

{ SUMMARY }
{ SUMM }

 -------- Report Type Parameters ----------------------------

 [KEYFIELD [REGISTERS | NOREGISTERS]]
 [FORMAT]
 [TCBSUMMARY]
 [JOBSUMMARY]

 -------- Address Space Selection Parameters ----------------

 [ALL]
 [CURRENT]
 [ERROR]
 [TCBERROR | ANOMALY]
 [ASIDLIST(asidlist)]
 [JOBLIST(joblist) | JOBNAME(joblist)]

 -------- SETDEF-Defined Parameters -------------------------

[ACTIVE | MAIN | STORAGE]
 [DSNAME(dsname) | DATASET(dsname)]
 [FILE(ddname) | DDNAME(ddname)]
 [PATH(path-name)]

[FLAG(severity)]
[PRINT | NOPRINT]
[TERMINAL | NOTERMINAL]
[TEST | NOTEST]
Appendix C. z/OS trace processing data 313

Figure C-4 VERBEXIT subcommand parameters

C.1.6 VERBX VSMDATA subcommand
Specify the VSMDATA verb name and optional parameters on the VERBEXIT subcommand,
shown in Figure C-5, to format diagnostic data from virtual storage management (VSM).

Figure C-5 VERBX VSMDATA subcommand parameters

C.1.7 STATUS FAILDATA subcommand
Figure C-6 on page 315 and Figure C-7 on page 316 show the output from a STATUS
FAILDATA subcommand described in 6.21, “Using IPCS to find the failing instruction” on
page 174.

{ VERBEXIT } { pgmname }
{ VERBX } { verbname }
 ['parameter [,parameter]...']
 [AMASK(mask)]
 [SYNTAX | NOSYNTAX]

[TOC | NOTOC]

 -------- SETDEF-Defined Parameters -------------------------

[ACTIVE | MAIN | STORAGE]
 [DSNAME(dsname) | DATASET(dsname)]
 [FILE(ddname) | DDNAME(ddname)]
 [PATH(path-name)]

 [PRINT | NOPRINT]
 [TERMINAL | NOTERMINAL]
 [TEST | NOTEST]

 VERBEXIT VSMDATA ['parameter [,parameter]...']
The parameters are:
 [CONTROLBLOCKS] [ALL] [DETAIL]
 [SUMMARY]
 [CURRENT]
 [ERROR]
 [TCBERROR]
 [NOASIDS]
 [ASIDLIST(asidlist)]
 [JOBNAME(joblist) | JOBLIST(joblist)]
 [GLOBAL|NOGLOBAL]
 [OWNCOMM [([CSA] [SQA])]
 [SUMMARY]
 [DETAIL]
 [ALL]
 [ASIDLIST(asidlist)]
 [SYSTEM]
 [SORTBY(ASIDADDR|ASIDLEN|ADDRESS|TIME|LENGTH)]
 [CONTENTS(YES|NO)]
314 ABCs of z/OS System Programming Volume 8

Figure C-6 Output from a STATUS FAILDATA subcommand

 * * * DIAGNOSTIC DATA REPORT * * *
SEARCH ARGUMENT ABSTRACT

 PIDS/5752SC1B6 RIDS/IEFSD060#L RIDS/IEFSD060 AB/S023E PRCS/00000008 REGS/0E0
 REGS/06110 RIDS/IEFIB620#R

 Symptom Description
 ------- -----------
 PIDS/5752SC1B6 Program id: 5752SC1B6
 RIDS/IEFSD060#L Load module name: IEFSD060
 RIDS/IEFSD060 Csect name: IEFSD060
 AB/S023E System abend code: 023E
 PRCS/00000008 Abend reason code: 00000008
 REGS/0E018 Register/PSW difference for R0E: 018
 REGS/06110 Register/PSW difference for R06: 110
 RIDS/IEFIB620#R Recovery routine csect name: IEFIB620

OTHER SERVICEABILITY INFORMATION

 Recovery Routine Label: IEFIB620
 Date Assembled: 04328
 Module Level: HBB7720
Subfunction: INITIATOR JOB PROCESS

Time of Error Information

 PSW: 070C1000 81329D48 Instruction length: 02 Interrupt code: 000D
 Failing instruction text: 00181610 0A0D50E0 D0049180

 Registers 0-7
 GR: 84000000 8423E000 7FFEFF0C 007FF3D0 007FF448 00000BE0 81329C38 007C9E1C
 AR: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
 Registers 8-15
 GR: 00000000 0167BFA0 7F775A68 00000B80 00000BD8 007FDB28 81329D30 00000008
 AR: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000C05
Home ASID: 008A Primary ASID: 008A Secondary ASID: 008A
 PKM: 8040 AX: 0000 EAX: 0000

 RTM was entered because an SVC was issued in an improper mode.
 The error occurred while a locked or disabled routine was in control.
 No locks were held.
 No super bits were set.

STATUS FROM THE RB WHICH ESTABLISHED THE ESTAE EXIT

 PSW: 070C3000 840F55D8 Instruction length: 02 Interrupt code: 003E
 Registers 0-7
 GR: 840F48A2 007F0B18 00000020 007FF708 007CA9B0 007FF448 007F0DC4 007EAEC1
AR: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
 Registers 8-15
 GR: 007F0B18 840F5372 00FC0200 007FF448 840F48A2 007CAA18 840F55C0 00000000
 AR: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000C05
Appendix C. z/OS trace processing data 315

Figure C-7 Completion of STATUS FAILDATA output

RECOVERY ENVIRONMENT

 Recovery routine type: ESTAE recovery routine
 Recovery routine entry point: 040EC0F0
 The RB associated with this exit was not in control at the time of error.
 User requested no I/O processing.

VARIABLE RECORDING AREA (SDWAVRA)

 +000 Key: 22 Length: 14
 +002 C9D5C9E3 C9C1E3D6 D940C6D6 D6E3D7D9 |INITIATOR FOOTPR|
 +012 C9D5E3E2 |INTS |

 +016 Key: 23 Length: 50
 +018 C9D5C9E3 C6D7D5E3 80BF00C0 00CCE3F0 |INITFPNT...{..T0|
 +028 E0000EEC 80000080 C000F0C0 EE3FC000 |\.......{.0{..{.|
 +038 00000000 E63C0300 000000E0 E068009F |....W......\\...|
 +048 EFFE8000 00A0B87F E3003C00 0017FFFF |......."T.......|
 +058 80000000 FFE0A000 00000000 00000000 |.....\..........|

 +068 Key: 50 Length: 02
 +06A 0023 |.. |

 +06C Key: 53 Length: 00

IEA24013I FORMATTING COMPLETED SUCCESSFULLY.
316 ABCs of z/OS System Programming Volume 8

Appendix D. IPCS commands

This appendix discusses IPCS commands. Use the IPCS primary command to invoke an
IPCS subcommand, CLIST, or REXX EXEC from any of the panels of the IPCS dialog. The
subcommand, CLIST, or REXX EXEC is entered exactly as though it was being invoked
under IPCS inline mode. If the subcommand, CLIST, or REXX EXEC sends a report to the
terminal, you view the report using the dump display reporter panel.

D

Note: Do not use the IPCS primary command to invoke a CLIST that contains a
combination of a TSO/E CLIST function, such as SYSOUTTRAP, and an authorized
TSO/E command, such as LISTD. Such a CLIST should be invoked only in IPCS line or
batch mode or in a TSO/E environment.
© Copyright IBM Corp. 2007. All rights reserved. 317

D.1 IPCS commands
There are two ways to enter subcommands from the IPCS dialog:

� Choose option 4 (COMMAND) and enter the subcommand on the command line:

===> ANALYZE EXCEPTION

� Use the IPCS primary command to prefix the subcommand invocation from any command
or option line of the IPCS dialog. For example:

COMMAND ===> IPCS ANALYZE EXCEPTION
COMMAND ===> IP ANALYZE EXCEPTION

Example D-1 shows a list of IPCS subcommands.

Example: D-1 IPCS commands and subcommands

ip analyze exception : shows lock contention
ip asmk : ASM info
ip verbx asmdata : formats asm cb's (part, parte etc)
ip cbstat @ str(ascb) : ascb status.
ip cbstat @ str(srb) asid(1): SSRB and SRB status.
ip cbstat @ str(tcb) asid(1): tcb status from TCBFLGS8.
ip cbstat str(storestatus) : data about failing NIP RIMs
ip cbf (xxx) : any CB in the symbol table, see ip listsym)
ip cbf cvt : Communications Vector Table
ip cbf gda : +D8=VSM tracker flags 08=CSA on 04=SQA on.
ip cbf lcca1 : first lcca for wait064 rc9 at IPL
ip cbf rtct : Recov. Term. Cont. Tbl. (asids dumped)
ip cbf rtct str(sdump) view(flags) : shows SDUMP flag output
ip cbf ucbxxx
ip cbf @ str(asid ucb)
ip cbf @. str(tcb)
ip ctrace comp(syslla) full : LLA @ space must be in the dump
ip ctrace comp(sysrsm) full
ip ctrace comp(sysrsm) asid(x'nn') full
 : abendA78 rc18, 'f defer' for fixed pg.
 : See VSMHELP file for output explanation.
ip ctrace query(sysrsm) : Start & end times if RSM tracing is on.
ip divdata : Exception report is the default.
ip divdata detail : DIB DIBX DOA WCB for curr error asid.
ip divdata exception : exception
ip divdata summ : DOA queue sumary.
ip divdata trace : Output of RSM DIV component trace.
ip divdata trace full : RSM DIV component trace for all ASIDs.
ip divdata trace asid(x'ff'): output for rsm div comp. trace in asid ff
ip eq labelname @@. str(control block type EX; svrb, rb ascb)
ip eq labelname @@. l(x'20'): ex: eq gxl 1F1888E0 L(X'20')
 find ' SSRV 78'
ip gtf svc : formats SVCs in an SVC trace.
ip gtf svc(6,9) : formats SVC 6 and 9's in an SVC trace.
ip gtf usr(f65) : formats get/free trace data in the dump
 see GTF info above
ip gtf usr(f65) startloc(ddd,hh.mm.ss) ddd=date
ip ioscheck smgrblks : SMGR blks from IECVEXSM sp226 do a find
 on smgr:, then look at nopages, repeat, one smgr blk should have a lot of pages
(mine had DF), do a find on '0076 ' and asid doing the EXCP is previous to the
318 ABCs of z/OS System Programming Volume 8

0076, keep track of them and see whom is doing the most, there will be a pattern
or type of job doing the majority.
ip iosk actvucbs : active UCB's
ip iosk capture : max to bott to see captured UCB @'s
ip ipcsdata : IPCS r10+ cmd. See what rel of IPCS used.
ip list @ l(x'nnn') : list storage at virt. location x'nnn'
ip list E0. l(16) block(0) : Partial dump rsn codes per iea611/iea911
 also mapped by SDRSN control block.
IP L 208?+4 L(2) : If is a FF (x'C6C6') we are under VM.
 : PSA+208->PCCA+4 = CPU id (serial number)
ip l cvt+8c?+188? : lists where IPLINFO get its info from.
ip l cvt+128?+68? : lists out the PPT. see section above on PPT
ip l cvt+2AC?+8? : Processor type & model(see also below).
ip l cvt+3e0? : what CVTRAC pts 2. RACF/ACF/TSS used?
ip l CVT+24c?+2c? l(4096) : reg6= Fetch work area in a IEWFETCH,10 slip
ip l CVT+4c0?+10 l(4) : word with: if DFSMS is used (byte 1>0) and
 3 bytes w/SMS version,release,mod lvl
ip l CVT+42C?+1A l(26) : Type & model of processor. See CPU DIAG
 CVT+42C->HID+1A = CPU related data
 ** may not be filled in too early in IPL?
ip l CVT+340?+50 L(1) : If x'80' bit is on we are in LPAR mode.
 CVT+340->SCCB+50 = byte w/BFY bit
ip l ecvt+150 l(8) : hardware name, ECVTHDNM, HWNAME
ip l ecvt+158 l(8) : ECVTLPNM, LPARNAME
ip l ecvt+160 l(8) : ECVTVMNM, VMUSERID X'40's if not used.
ip l inittcb@.+b4?+15C?+148?: +x'10'=SCT, +x'50'(byte 1)= jobstep#
 +148= SCT header, SCT starts at +158,
 +40=step # for restart.
ip list 0 dspname(nnn) nnn : the dataspace name dump directory LD cmd
ip list 0 dspname(nnn) asid(x'nn') nn if asid is other than your own
ip list 0 dspname(nnn) asid(x'nn') len(x'1000')
ip E0. l(16) block(0) : partial dump reasons, formats SDRSN cb.
ip list cvt+24c? len(800) : slip sdump buffer PSW & regs when slip hit.
ip l cvt+10C? len(400) : shows the qmsg area, see iea705I in notes
ip list cvt+7c%+D0?+8? : V5.2+ shows the ucb lookup @'s.
ip list IEAVESLA : system resources lock list.
ip list sliptrap : shows slip trap creating dump if so.
ip list title
ip list PSAn len(4000) : N is the CPU PSA you want to look at.
ip list sliptrap
ip listsym : lists all symbols.
ip list ucbxxx : lists ucb #xxx.
ip listu xxx : lists ucb storage for device #xxx.
ip listucb xxx : lists ucb storage for device #xxx.
ip lpamap : lists lpa mods and locations
ip rsmdata all : for all asid's.
ip rsmdata : see ASKQ RTA000153245 for output explan.
 - with rsmdata options, asid(x'n'), all, jobname, can be used
ip rsmdata divmap : divmapped areas within the address space
ip rsmdata summ : Expanded, In configuration # / 256 =
 total meg of estor defined to system.<
 each gig defined requires 8 meg of ESQA
 storage pg tables to be getmained.
ip rsmdata addrspace { Diag reference chapter 21 RSM explains outputs }
ip rsmdata addrspace all
Appendix D. IPCS commands 319

ip rsmdata realframe { Diag reference chapter 21 RSM explains outputs }
ip rsmdata realframe ra(nnn) : nn is real rame address of storage.
ip rsmdata virtpage { Diag reference chapter 21 RSM explains outputs }
ip rsmdata virtpage ra(virt @ of pg of storage) asid(x'nnnn')

Note: if stat = fref (first reference) then storage was never
 referenced (used) and will not be available in the dump
 G = is it getmained, K = key of storage,
 F = is pg fetch protected, PSW key must match pg key
 P = is pg pg protected, pg cannot be storage to

ip select : tells which asid dump is taken of...
ip select all : gives all asid assignments
ip stack @. remark('comment') : puts @ on IPCS dump pointers page
ip status : time and error psw
ip status cpu
ip status faildata : format SDWA (none for a slip dump)
ip status faildata cpu reg5
ip status system : IEAVTSDT=scheduled, SVCDUMP=sync.dump
ip status worksheet : SDUMP SDATA tells what storage is dumped.
ip summ format : format out RTM2WA
ip summ format asid(x'nn')
ip summ jobsummary all : lists all CPU and job status info.
ip summ tcberror : format the tcb in error.
ip symdef : Displays symbols symbolics
ip systrace time(local) : verbx systrace if mvs 5.1 or older.
ip systrace exc(br) : excluds branch entries in systrace.
ip tcbexit iecdafmt tcb@. asid(x'nn')
ip verbx cnmipcs 'cpool' : Netview cell pool cellpool stats
ip verbx csvllipc 'stats,lib=SYS1.SCEERUN,member=*,fetched'
 : shows dasd and VLF fetch stats for lib
ip verbx DFHPDxxx 'SM=3' : shows CICS storage (x is release ex:410)
 & lvls of cics mods
ip verbx iplstats :
ip verbx ledata : LE envirment data, there heap options.
ip verbx ledata 'all' :
ip verbx ledata 'heap' : f @, tells if user/anywhere/below CB's
ip verbx logdata : formatted sys1.logrec records
ip verbx mtrace :
ip verbx nucmap :
ip verbx sadmpmsg : SAD messages not yet avilable??
ip verbx srmdata :
ip verbx smsdata : DFSMS and PDSE data for the dump
ip verbx smsxdata : See DFSMS Diagnosis Reference
ip verbx smsxdata active : SMSXDATA against active storage.
ip verbx smsxdata 'comp(pml)' : See DFSMS Diag Ref pg378
ip verbx smsxdata 'nog map asid(nn)' : for these and PDSE MVS commands.
ip verbx trace :systrace info for >r520 systems, default: all
ip verbx utrace : shows systrace all for problem inhouse SADs.
ip verbx vtammap : find 'BPCB' each bpcp +2C is size of that
 vtam buffer, large one (>1000) is suspect.
 output same as MVS 'd net,bfruse' command.
ip verbx vsmdata 'noa summ' :
ip verbx vsmdata 'nog summ' :
ip verbx vsmdata 'asidlist(NN) nog' :
320 ABCs of z/OS System Programming Volume 8

ip verbx vsmdata 'o d' :
ip verbx vsmdata 'o d conte(no) so(time)'
ip verbx vsmdata 'o d sortby(address)' :
ip verbx vsmdata 'o d sortby(asidaddr)':
ip verbx vsmdata 'o d sortby(asidlen)' :
ip verbx vsmdata 'o d sortby(length)' : storage length
ip verbx vsmdata 'o d sortby(time)'
ip verbx vsmdata 'o summ' : lists asids total global storage usage
ip verbx wtlb : unwritten syslog buffer
ip webcount all : inhouse only, produces global web report
ip where @. : shows mod in which @ resides, done via a
 LPDE CB (LPA Dir. Entry) or CDE for a
 local storage address.
ip w structurename : any structure in symbol table EX:ascb1>
Appendix D. IPCS commands 321

322 ABCs of z/OS System Programming Volume 8

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this book.

IBM Redbooks

For information about ordering these publications, see “How to get Redbooks” on page 324.
Note that some of the documents referenced here may be available in softcopy only.

� z/OS Diagnostic Data Collection and Analysis, SG24-7110

Other publications

These publications are also relevant as further information sources:

� Environmental Record Editing and Printing Program (EREP) User’s Guide, GC35-0151

� z/OS MVS Diagnosis: Tools and Service Aids, SY28-1085

� z/OS MVS Diagnosis: Reference, GA22-7588

� z/OS MVS Initialization and Tuning Reference, SA22-7592

� z/OS XL C/C++ User's Guide, SC09-4767

� z/OS MVS IPCS Commands, SA22-7594

� z/OS MVS System Codes, SA22-7626

� z/OS MVS System Messages, Vol 1 (ABA-AOM), SA22-7631

� z/OS MVS System Messages, Vol 2 (ARC-ASA), SA22-7632

� z/OS MVS System Messages, Vol 3 (ASB-BPX), SA22-7633

� z/OS MVS System Messages, Vol 4 (CBD-DMO), SA22-7634

� z/OS MVS System Messages, Vol 5 (EDG-GFS), SA22-7635

� z/OS MVS System Messages, Vol 6 (GOS-IEA), SA22-7636

� z/OS MVS System Messages, Vol 7 (IEB-IEE), SA22-7637

� z/OS MVS System Messages, Vol 8 (IEF-IGD), SA22-7638

� z/OS MVS System Messages, Vol 9 (IGF-IWM), SA22-7639

� z/OS MVS System Messages, Vol 10 (IXC-IZP), SA22-7640

� z/OS UNIX System Services Messages and Codes, SA22-7807

� z/OS MVS Data Areas, Volume 1 (ABEP - DALT), GA22-7581

� z/OS MVS Data Areas, Volume 2 (DCCB - ITZYRETC), GA22-7582

� z/OS MVS Data Areas, Volume 3 (IVT - RCWK), GA22-7583

� z/OS MVS Data Areas, Volume 4 (RD - SRRA), GA22-7584

� z/OS MVS Data Areas, Volume 5 (SSAG - XTLST), GA22-7585
© Copyright IBM Corp. 2007. All rights reserved. 323

How to get Redbooks

You can search for, view, or download Redbooks, Redpapers, Technotes, draft publications
and Additional materials, as well as order hardcopy Redbooks, at this Web site:

ibm.com/redbooks

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
324 ABCs of z/OS System Programming Volume 8

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

(0.5” spine)
0.475”<

->
0.873”

250 <
->

 459 pages

ABCs of z/OS System
 Program

m
ing Volum

e 8

ABCs of z/OS System
 Program

m
ing

Volum
e 8

ABCs of z/OS System
 Program

m
ing

Volum
e 8

ABCs of z/OS System
 Program

m
ing Volum

e 8

ABCs of z/OS System
 Program

m
ing

Volum
e 8

ABCs of z/OS System
 Program

m
ing

Volum
e 8

®

SG24-6988-00 ISBN 0738486167

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

®

ABCs of z/OS System
Programming
Volume 8

Diagnosis
fundamentals, IPCS

Dump analysis,
problem diagnosis

Diagnostic
procedures

The ABCs of z/OS System Programming is an 11-volume collection that provides an
introduction to the z/OS operating system and the hardware architecture. Whether you are
a beginner or an experienced system programmer, the ABCs collection provides the
information you need to start your research into z/OS and related subjects. If you would
like to become more familiar with z/OS in your current environment, or if you are
evaluating platforms to consolidate your e-business applications, the ABCs collection
serves as a powerful technical tool.
This publication, Volume 8, shows you how to:
� Adopt a systematic and thorough approach to dealing with problems and identifying

the different types of problems
� Determine where to look for diagnostic information and how to obtain it
� Interpret and analyze the diagnostic data collected
� Escalate problems to the IBM Support Center when necessary
� Collect and analyze diagnostic data—a dynamic and complex process
� Identify and document problems, collect and analyze pertinent diagnostic data and

obtain help as needed, to speed you on your way to problem resolution

The content of the volumes is as follows:
Volume 1: Introduction to z/OS and storage concepts, TSO/E, ISPF, JCL, SDSF, and z/OS
delivery and installation
Volume 2: z/OS implementation and daily maintenance, defining subsystems, JES2 and
JES3, LPA, LNKLST, authorized libraries, SMP/E, Language Environment
Volume 3: Introduction to DFSMS, data set basics storage management hardware and
software, catalogs, and DFSMStvs
Volume 4: Communication Server, TCP/IP, and VTAMÆ
Volume 5: Base and Parallel SysplexÆ , System Logger, Resource Recovery Services
(RRS), global resource serialization (GRS), z/OS system operations, automatic restart
management (ARM), Geographically Dispersed Parallel Sysplexô (GDPSÆ)
Volume 6: Introduction to security, RACF, Digital certificates and PKI, Kerberos,
cryptography and z990 integrated cryptography, zSeriesÆ firewall technologies, LDAP,
and Enterprise identity mapping (EIM)
Volume 7: Printing in a z/OS environment, InfoprintÆ Server and Infoprint Central
Volume 8: An introduction to z/OS problem diagnosis
Volume 9: z/OS UNIX System Services
Volume 10: Introduction to z/Architectureô , zSeries processor design, zSeries
connectivity, LPAR concepts, HCD, and HMC
Volume 11: Capacity planning, performance management, WLM, RMFô , and SMF

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this book
	Become a published author
	Comments welcome

	Chapter 1. z/OS problem diagnosis fundamentals
	1.1 Problem identification
	1.2 What version or release is running
	1.3 Waits, system hangs, and abends
	1.4 Logging messages
	1.5 Dumps and traces
	1.6 Tools and service aids
	1.7 Tools and service aids
	1.8 Problem analysis with IPCS
	1.9 SMP/E and maintenance
	1.10 Using SMP/E and dumps
	1.11 SDSF and RMF

	Chapter 2. Problem resolution steps
	2.1 Identifying a problem
	2.2 Prioritize problem resolution
	2.3 Problem severity
	2.4 Analyze a problem - ask for assistance
	2.5 Gather Messages and Logrec
	2.6 SYSLOG processing
	2.7 SYSLOG messages
	2.8 OPERLOG (operations log)
	2.9 Job error logs
	2.10 Logrec data set
	2.11 Analyzing EREP reports
	2.12 Using EREP
	2.13 EREP reports
	2.14 EREP parameter and control statements
	2.15 Copy logs to tape
	2.16 Implement a resolution

	Chapter 3. Common problem types
	3.1 Common problem types
	3.2 Stand-alone dumps
	3.3 Symptom dump output
	3.4 Waits, hangs, and loops
	3.5 SLIP command
	3.6 Storage overlays
	3.7 Storage overlay during IPL
	3.8 Storage overlay in a production system
	3.9 SLIP to catch the overlayer

	Chapter 4. Dump processing
	4.1 Getting or requesting dumps
	4.2 Slip commands
	4.3 SLIP dumps
	4.4 SNAP dumps
	4.5 Stand-alone dumps
	4.6 The SADMP program
	4.7 Using stand-alone dumps
	4.8 SADMP processing
	4.9 SVC dumps
	4.10 Allocating SYS1.DUMPxx data sets
	4.11 Automatic allocation of SVC dump data sets
	4.12 Dumping multiple address spaces in a sysplex
	4.13 Managing taking a dump
	4.14 Customizing dumps using SDATA options
	4.15 Dump options and considerations
	4.16 Catalog address space (CAS) dumps

	Chapter 5. z/OS trace processing
	5.1 z/OS trace facilities
	5.2 GTF trace definitions
	5.3 Implementing GTF trace
	5.4 Component trace (CTRACE)
	5.5 Implementing component trace
	5.6 Component trace for System Logger
	5.7 Master trace
	5.8 GFS trace
	5.9 System trace
	5.10 SMS tracing
	5.11 Trace data using an external writer

	Chapter 6. IPCS dump debugging
	6.1 IPCS dump debugging
	6.2 IPCS command processing
	6.3 IPCS dump debug example
	6.4 IPCS support of large data sets
	6.5 Setting the IPCS defaults
	6.6 IPCS utility menu
	6.7 SADMP dump data set utility
	6.8 Using IPCS subcommands
	6.9 SADMP analysis and COPYDUMP
	6.10 IPCS COPYDUMP
	6.11 Using subcommands
	6.12 Analyzing dumps
	6.13 IPCS trace commands - MTRACE
	6.14 SYSTRACE command
	6.15 IPCS SUMMARY subcommand
	6.16 What is VERBX
	6.17 IPCS VERBX LOGDATA command
	6.18 Using the SYS1.LOGREC
	6.19 IPCS virtual storage commands
	6.20 Using IPCS to browse storage
	6.21 Using IPCS to find the failing instruction
	6.22 Analyzing for resource contention
	6.23 Searching IBM problem databases

	Chapter 7. z/OS Language Environment
	7.1 Language Environment ABEND and CEEDUMP handling
	7.2 Common Language Environment messages
	7.3 Language Environment message abend prefixes
	7.4 Collecting debug documentation
	7.5 Language Environment and CICS debugging
	7.6 Language Environment and UNIX System Services dumps
	7.7 Understanding CEEDUMP
	7.8 ZMCH control block
	7.9 IPCS and Language Environment

	Chapter 8. Debug and maintenance tools
	8.1 Using SMP/E
	8.2 Find a load module
	8.3 AMBLIST job to get LMOD and source information
	8.4 IEAABD00, IEADMP00 and IEADMR00 members
	8.5 PDATA options (only valid for IEADMP00)
	8.6 SDATA and PDATA recommendations

	Chapter 9. SDSF and RMF
	9.1 System Display and Search Facility (SDSF)
	9.2 Using the SYSLOG for debugging
	9.3 RMF Resource Measurement Facility
	9.4 RMF Monitor I data gathering
	9.5 Monitor II data gathering
	9.6 RMF Monitor III data gathering

	Chapter 10. z/Architecture and addressing
	10.1 Program status word (PSW)
	10.2 Program-status word (PSW)
	10.3 64-bit addressing
	10.4 Next sequential instruction
	10.5 64-bit address space

	Appendix A. IPCS tools and lab exercises
	A.1 IPCS lab exercise agenda
	A.2 IPCS lab setup instructions
	A.3 Commands to analyze dumps
	A.4 The RTCT control block
	A.5 The IP ST REGS command
	A.6 Browsing storage
	A.7 IPCS SYSTRACE subcommand
	A.8 IPCS VERBX MTRACE subcommand
	A.9 IP SUMMARY FORMAT subcommand
	A.10 The IP ANALYZE RESOURCE subcommand
	A.11 Diagnosing excessive CPU time
	A.12 TSO user hung
	A.13 Job IBMUSER3 hung (contention problem?)
	A.14 A standalone dump example
	A.15 LIST TITLE and LIST SLIPTRAP - Answers
	A.16 IP ST WORKSHEET - Answers
	A.17 Using the RTCT control block - Answers
	A.18 Information from IP ST REGS - Answers
	A.19 IP SYSTRACE - Answers
	A.20 IP VERBX MTRACE - Answers
	A.21 SUMMARY FORMAT - Answers
	A.22 ANALYZE RESOURCE - Answers
	A.23 Diagnosing excessive CPU time - Answers
	A.24 TSO user hung - Answers
	A.25 Job IBMUSER3 hung (contention problem?) - Answers
	A.26 A standalone dump example - Answers
	A.27 Diagnosing loops and hangs

	Appendix B. Using IPCS to diagnose abends
	B.1 Lab exercises
	Diagnosing an ABEND0C1 dump
	Diagnosing an ABEND0C4
	Diagnosing ABEND138 errors
	Diagnosing storage problems - ABEND878
	Diagnosing local storage shortage
	Lab exercise #1 - Answers IP ST REGS
	Lab exercise #1 - Answers IP SYSTRACE
	Lab exercise #1 - Answers Summary Format
	Lab exercise #2 - Answers diagnosing an ABEND0C1
	Lab exercise #3 - Answers diagnosing an ABEND0C4
	Lab exercise #4 - Answers diagnosing an ABEND138
	Lab exercise #5 - Answers diagnosing storage - ABEND878
	Lab exercise #5 - Answers ABEND878 - Analyzing storage use
	Lab exercise #5 - Answers ABEND878 - CSA/SQA tracker
	Lab exercise #6 - Answers diagnosing local storage shortages

	Appendix C. z/OS trace processing data
	C.1 GFS trace information
	C.1.1 DIAGxx parmlib member syntax
	C.1.2 GFS trace data
	C.1.3 IPCS MVS dump component data analysis panel
	C.1.4 SUMMARY subcommand parameters
	C.1.5 VERBEXIT subcommand
	C.1.6 VERBX VSMDATA subcommand
	C.1.7 STATUS FAILDATA subcommand

	Appendix D. IPCS commands
	D.1 IPCS commands

	Related publications
	IBM Redbooks
	Other publications
	How to get Redbooks
	Help from IBM

	Back cover

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

